Abstract

We present a new apparatus making possible both homogeneity and multipass pumping. It is made up of a square section kaleidoscope made of transparent medium on the terminal faces of which are set mirrors with transparent holes at the centers. The kaleidoscope homogenizes the beam. The pump power reflected by the amplifier medium returns in the kaleidoscope, and the mirrors reflect this pump light toward the amplifier medium.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
    [Crossref]
  2. G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).
  3. P. Lacovara, H. K. Choi, C. A. Wang, R. L. Aggarwal, and T. Y. Fan, "Room-temperature diode-pumped Yb:YAG laser," Opt. Lett. 16, 1089-1091 (1991).
    [Crossref] [PubMed]
  4. A. Bayramian, "Mercury project update: FY06 summary and FY07 plans," presented at the HAPL meeting, Princeton Plasma Physics Laboratory, 12 December 2006.
  5. G. L. Bourdet, "Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror," Appl. Opt. 44, 1018-1027 (2005).
    [Crossref] [PubMed]
  6. G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium-doped materials," Opt. Commun. 200, 331-342 (2001).
    [Crossref]
  7. A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).
  8. A. Giesen and J. Speiser, "Fifteen years of work on thin-disk lasers: results and scaling laws," IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
    [Crossref]
  9. G. L. Bourdet and E. Bartnicki, "Generalized formula for cw end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations," Appl. Opt. 45, 9203-9209 (2006).
    [Crossref] [PubMed]
  10. M. M. Chen, J. B. Berkowitz-Mattuck, and P. E. Glaser, "The use of a kaleidoscope to obtain uniform flux over a large area in a solar or arc imaging furnace," Appl. Opt. 2, 265-272 (1963).
    [Crossref]
  11. K. Kreske, "Optical design of a solar flux homogenizer for concentrator photovoltaics," Appl. Opt. 41, 2053-2058 (2002).
    [Crossref] [PubMed]
  12. Y. Matsuura, D. Akiyama, and M. Miyagi, "Beam homogenizer for hollow-fiber delivery system of excimer laser light," Appl. Opt. 42, 3505-3508 (2003).
    [Crossref] [PubMed]
  13. R. Leutz and H. Ries, "Microstructured light guides overcoming the two-dimensional concentration limit," Appl. Opt. 44, 6885-6889 (2005).
    [Crossref] [PubMed]
  14. G. L. Bourdet, "Theoretical investigations of quasi-three-level longitudinally pumped cw laser," Appl. Opt. 39, 966-971 (2000).
    [Crossref]
  15. Fraunhofer-Institut für Lasertechnik ILT, Annual Report 2004, M. Traub, p. 34.
  16. C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
    [Crossref]

2007 (1)

A. Giesen and J. Speiser, "Fifteen years of work on thin-disk lasers: results and scaling laws," IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[Crossref]

2006 (2)

G. L. Bourdet and E. Bartnicki, "Generalized formula for cw end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations," Appl. Opt. 45, 9203-9209 (2006).
[Crossref] [PubMed]

A. Bayramian, "Mercury project update: FY06 summary and FY07 plans," presented at the HAPL meeting, Princeton Plasma Physics Laboratory, 12 December 2006.

2005 (2)

2004 (1)

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

2003 (2)

Y. Matsuura, D. Akiyama, and M. Miyagi, "Beam homogenizer for hollow-fiber delivery system of excimer laser light," Appl. Opt. 42, 3505-3508 (2003).
[Crossref] [PubMed]

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

2002 (1)

2001 (1)

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium-doped materials," Opt. Commun. 200, 331-342 (2001).
[Crossref]

2000 (1)

1998 (1)

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

1994 (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

1991 (1)

1963 (1)

Aggarwal, R. L.

Akiyama, D.

Bartnicki, E.

Bayramian, A.

A. Bayramian, "Mercury project update: FY06 summary and FY07 plans," presented at the HAPL meeting, Princeton Plasma Physics Laboratory, 12 December 2006.

Bayramian, A. J.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Beach, R. J.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Berkowitz-Mattuck, J. B.

Bibeau, C.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Bourdet, G. L.

G. L. Bourdet and E. Bartnicki, "Generalized formula for cw end-pumped Yb-doped material amplifier gain and laser output power in various pumping configurations," Appl. Opt. 45, 9203-9209 (2006).
[Crossref] [PubMed]

G. L. Bourdet, "Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror," Appl. Opt. 44, 1018-1027 (2005).
[Crossref] [PubMed]

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium-doped materials," Opt. Commun. 200, 331-342 (2001).
[Crossref]

G. L. Bourdet, "Theoretical investigations of quasi-three-level longitudinally pumped cw laser," Appl. Opt. 39, 966-971 (2000).
[Crossref]

Brauch, U.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Campbell, R. W.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Chanteloup, J.-C.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

Chen, M. M.

Choi, H. K.

Davis, W. H.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Dawson, J. W.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

DeWald, A.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Dimercurio, L. E.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Ebbers, C. A.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Emanuel, M. A.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Fan, T. Y.

Freitas, B. L.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Fülöp, A.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

Giesen, A.

A. Giesen and J. Speiser, "Fifteen years of work on thin-disk lasers: results and scaling laws," IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[Crossref]

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Glaser, P. E.

Hill, M. R.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Hood, K. M.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Hügel, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Jancaitis, K. S.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Julien, Y.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

Kanz, V. K.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Kreske, K.

Lacovara, P.

Leutz, R.

Matsuura, Y.

Menapace, J. A.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Migus, A.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

Mitchell, S. C.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Miyagi, M.

Opower, H.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Payne, S. A.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Randles, M. H.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Rankin, J. E.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Ries, H.

Schaffers, K. I.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Skidmore, J.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Speiser, J.

A. Giesen and J. Speiser, "Fifteen years of work on thin-disk lasers: results and scaling laws," IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[Crossref]

Stoltz, C. J.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Sutton, S. B.

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

Tassano, J. B.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Telford, S. J.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Utterback, E. J.

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Voss, A.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Wang, C. A.

Wittig, K.

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Appl. Opt. (7)

Appl. Phys. B (1)

A. Giesen, H. Hügel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

IEEE J. Quantum Electron. (1)

C. Bibeau, R. J. Beach, S. C. Mitchell, M. A. Emanuel, J. Skidmore, C. A. Ebbers, S. B. Sutton, and K. S. Jancaitis, "High-average-power 1 μm performance and frequency conversion of a diode-end-pumped Yb:YAG laser," IEEE J. Quantum Electron. 34, 2010-2019 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Giesen and J. Speiser, "Fifteen years of work on thin-disk lasers: results and scaling laws," IEEE J. Sel. Top. Quantum Electron. 13, 598-609 (2007).
[Crossref]

In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, (1)

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, and A. Migus, "The LUCIA project: a high average power ytterbium diode-pumped solid state laser chain," In Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, Proc. SPIE 5478, 4-7 (2003).

Opt. Commun. (1)

G. L. Bourdet, "Comparison of pulse amplification performances in longitudinally pumped ytterbium-doped materials," Opt. Commun. 200, 331-342 (2001).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

C. Bibeau, A. J. Bayramian, R. J. Beach, R. W. Campbell, A. DeWald, W. H. Davis, J. W. Dawson, L. E. Dimercurio, C. A. Ebbers, B. L. Freitas, M. R. Hill, K. M. Hood, V. K. Kanz, J. A. Menapace, S. A. Payne, M. H. Randles, J. E. Rankin, K. I. Schaffers, C. J. Stoltz, J. B. Tassano, S. J. Telford, and E. J. Utterback, "Initial operation of the mercury laser-a gas cooled, 10 Hz, Yb:S-FAP system," in Solid State Lasers XIII: Technology and Devices, Proc. SPIE 5332, 244-250 (2004).
[Crossref]

Other (2)

Fraunhofer-Institut für Lasertechnik ILT, Annual Report 2004, M. Traub, p. 34.

A. Bayramian, "Mercury project update: FY06 summary and FY07 plans," presented at the HAPL meeting, Princeton Plasma Physics Laboratory, 12 December 2006.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Simple configuration.

Fig. 2
Fig. 2

Double-pass configuration.

Fig. 3
Fig. 3

Ratio of the incident power on the front face of the crystal to the power injected through mirror M 1 .

Fig. 4
Fig. 4

Fraction of pump energy stored in the amplifier versus transmission of the amplifier.

Fig. 5
Fig. 5

Mirrors' reflectivities product versus optimum length by Yb concentration product.

Fig. 6
Fig. 6

Laser intensity versus coupling mirror reflectivity for five values of the injected pump power.

Fig. 7
Fig. 7

Optimum amplifier length by Yb concentration product for five values of the injected pump power.

Fig. 8
Fig. 8

Optimum coupling mirror reflectivity (left scale, diamonds), optimum amplifier length (left scale, triangles) and efficiency (right scale, squares) for maximum laser output intensity.

Fig. 9
Fig. 9

Design of the experimental apparatus.

Fig. 10
Fig. 10

Homogeneity of the transmitted light.

Fig. 11
Fig. 11

Double backreflection pumping scheme.

Fig. 12
Fig. 12

Double contrapropagating pumping scheme.

Tables (3)

Tables Icon

Table 1 Parameters for the Simple Configuration

Tables Icon

Table 2 Additional Parameters for the Double-Pass Configuration

Tables Icon

Table 3 Parameters β, Γopt, and B Versus the Injected Pump Power

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Mirror M 1 : R 1 = r ( 1 S 1 a 2 ) ,
Mirror M 2 : R 2 = r ( 1 S 2 a 2 ) ,     T 2 = t S 2 a 2 .
T = T 2 + R 1 R 2 t 2 T 2 + + ( R 1 R 2 t 2 ) n T 2 + = T 2 1 R 1 R 2 t 2 ,
R = t R 1 T 2 ( 1 + R 1 R 2 t 2 + + ( R 1 R 2 t 2 ) n + ) = t 2 R 1 T 2 1 R 1 R 2 t 2 .
R a = R m p Γ 2 ,
P inc P p 0 = T γ + T γ R m p Γ 2 γ 2 R + + T γ ( R m p Γ 2 γ 2 R ) n + = T γ 1 R m p Γ 2 γ 2 R ,
I inc = P inc S a = T γ ( 1 R m p Γ 2 γ 2 R ) P p 0 S a ,
P i 0 = T γ 1 ( 1 + R m p Γ 2 γ 2 2 R m ) P p 0 ,
P r 0 = T γ 1 ( R m p 2 Γ 4 γ 2 2 R m ) P p 0 .
P = T γ 1 ( R m p 2 Γ 4 γ 2 2 R m ) γ 1 2 R P p 0 .
P i 1 = T γ 1 ( 1 + R m p Γ 2 γ 2 2 R m ) ( R m p 2 Γ 4 γ 2 2 R m ) γ 1 2 R P p 0 .
P i n = T γ 1 ( 1 + R m p Γ 2 γ 2 2 R m ) [ ( R m p 2 Γ 4 γ 2 2 R m ) γ 1 2 R ] n P p 0 .
P inc = T γ 1 ( 1 + R m p Γ 2 γ 2 2 R m ) 0 [ ( R m p 2 Γ 4 γ 2 2 R m ) γ 1 2 R ] n P p 0 = T γ 1 ( 1 + R m p Γ 2 γ 2 2 R m ) 1 Γ 4 γ 1 2 γ 2 2 R m R m p 2 R P p 0 .
I inc = T γ 1 ( 1 + R m p Γ 2 γ 2 2 R m ) ( 1 Γ 4 γ 1 2 γ 2 2 R m R m p 2 R ) P p 0 S a .
I a bs = I inc ( 1 Γ ) ( 1 + R m p Γ ) = T γ 1 ( 1 Γ ) ( 1 + R m p Γ ) ( 1 + γ 2 2 R m p R m Γ 2 ) 1 γ 1 2 γ 2 2 R m R m p 2 R Γ 4 P p 0 S a .
I las = A [ g 0 ( I p 0 B α 0 f l L ) + n R m l R s l ] ,
g 0 = σ l N Yb ( f l k + f u l ) , α 0 = σ p N Yb ( f l l + f u j ) .
A = ( 1 R s l ) R s l ( 1 R s l R m l ) ( R s l + R m l ) ,
B = T γ 1 ( 1 Γ ) ( 1 + R m p Γ ) ( 1 + γ 2 2 R m p R m Γ 2 ) 1 γ 1 2 γ 2 2 R m R m p 2 R Γ 4 .
Γ d B ( Γ ) d Γ | Γ opt = β β = f l f p f l 1 I p 0 .
L opt = n ( R m l R s l 1 / g 0 Γ opt 1 / α 0 ) f p f l .
L opt N Yb = n ( R m l R s l 1 / σ l ( f l k + f u l ) Γ opt 1 / σ p ( f l l + f u j ) ) f p f l .
I las = A [ ( g 0 α 0 I p 0 B f l g 0 L ) + n R m l R s l ] .
R a p = σ l ( f l k + f u l ) σ p ( f l l + f u j ) ,
I las = A [ I p 0 ( R a p B + β n ( R m l R s l Γ opt R a p ) ) + n R m l R s l ] .

Metrics