Abstract

Several architectures of wavefront sensors have been developed since the rise of adaptive optics. In all cases, optical elements are placed in front of image sensors. This makes the sensor quite bulky, expensive, and sensitive to optical misalignment. I propose two novel architectures fully embedded in the image sensor that require no additional optical element. The sensor can be placed directly in the beam to analyze, leading to small, easy to use, and cost-efficient systems. The two architectures are described before testing by simulation of their ability to sense the wavefront distortion and their sensitivity to signal-to-noise ratio.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC Press, 1996).
  2. D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, "Amplitude and phase beam characterization using a two-dimensional wavefront sensor," Proc. SPIE 2870, 72-82 (1996).
  3. J. D. Mansell, J. Hennawi, E. K. Gustafson, M. M. Fejer, R. L. Byer, D. Clubley, S. Yoshida, and D. H. Reitze, "Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a Shack-Hartmann wavefront sensor," Appl. Opt. 40, 366-374 (2001).
    [CrossRef]
  4. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006).
    [CrossRef]
  5. F. Díaz-Doutón, J. Pujol, M. Arjona, and S. O. Luque, "Curvature sensor for ocular wavefront measurement," Opt. Lett. 31, 2245-2247 (2006).
    [CrossRef]
  6. S. R. Chamot, C. Dainty, and S. Esposito, "Adaptive optics for ophthalmic applications using a pyramid wavefront sensor," Opt. Express 14, 518-526 (2006).
    [CrossRef]
  7. C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, "Metrology of thin transparent optics using Shack-Hartmann wavefront sensing," Opt. Eng. 43, 742-753 (2004).
    [CrossRef]
  8. F. Rigaut, B. L. Ellerbroek, and M. J. Northcott, "Comparison of curvature-based and Shack-Hartmann-based adaptive optics for the Gemini telescope," Appl. Opt. 36, 2856-2868 (1997).
  9. T. Y. Chew, R. M. Clare, and R. G. Lane, "A comparison of the Shack-Hartmann and pyramid wavefront sensors," Opt. Commun. 268, 189-195 (2006).
    [CrossRef]
  10. J. D. Mansell, P. B. Catrysse, E. K. Gustafson, and R. L. Byer, "Silicon deformable mirrors and CMOS-based wavefront sensors," Proc. SPIE 4124, 15-25 (2000).
    [CrossRef]
  11. D. W. de Lima Monteiro, G. Vdovin, and P. M. Sarro, "High-speed wavefront sensor compatible with standard CMOS technology," Sens. Actuators A 109, 220-230 (2004).
    [CrossRef]
  12. O. La Schiazza, T. Nirmaier, M. Han, and J. Bille, "A custom CMOS-based Hartmann-Shack wavefront sensor," Invest. Ophthalmol. Visual Sci. 46, 2002-B771 (2005).
    [CrossRef]
  13. E. R. Fossum, "Active pixel sensors: are CCDs dinosaurs?" Proc. SPIE 1900, 2-14 (1993).
    [CrossRef]
  14. E. Fossum, "CMOS image sensors: electronic camera-on-a-chip," IEEE Trans. Electron. Devices 44, 1689-1698 (1997).
    [CrossRef]
  15. S. U. Ay, M. P. Lesser, and E. R. Fossum, "CMOS active pixel sensor (APS) imager for scientific applications," Proc. SPIE 4836, 271-278 (2002).
    [CrossRef]
  16. A. El Gamal and H. Eltoukhy, "CMOS image sensors: an introduction to the technology, design, and performance limits, presenting recent developments and future directions," IEEE Circuits Devices Mag. 21(3), 6-20 (2005).
    [CrossRef]
  17. M. Bigas, E. Cabruja, J. Forest, and J. Salvi, "Review of CMOS image sensors," Microelectron. J. 37, 433-451 (2006).
    [CrossRef]
  18. M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, and A. Izumi, "Microlens design using simulation program for CCD image sensor," IEEE Trans. Consumer Electronics 38, 583-589 (1992).
    [CrossRef]
  19. S. U. Lee, J. L. Park, J. S. Choi, and J. G. Lee, "The fabrication process and characteristics of light loss free zero-space microlenses for CMOS image sensor," Proc. SPIE 5754, 1241-1248 (2005).
    [CrossRef]
  20. Y.-T. Fan, C.-S. Peng, and C.-Y. Chu, "Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors," Proc. SPIE 4115, 263-274 (2000).
    [CrossRef]
  21. H.-J. Hsu, F.-T. Weng, C.-K. Chang, and Y.-K. Hsiao, "Microlens design for compact lens system," Proc. SPIE 5116, 640-646 (2003).
    [CrossRef]
  22. D. A. Baillie and J. E. Gendler, "Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development," Proc. SPIE 5377, 953-959 (2004).
    [CrossRef]
  23. J. Vaillant and F. Hirigoyen, "Optical simulation for CMOS imager microlens optimization," Proc. SPIE 5459, 200-210 (2004).
    [CrossRef]
  24. G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in color CMOS image sensor," IEEE Trans. Electron. Devices 50, 4-11 (2003).
    [CrossRef]
  25. M. Mori, M. Katsuno, S. Kasuga, T. Murata, T. Yamaguchi, M. Ind, and J. Kyoto, "A 1/4 in. 2M pixel CMOS image sensor with 1.75 transistor/pixel," Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 1, 110-111 (2004).
  26. M. Cohen, F. Roy, D. Hrault, Y. Cazaux, A. Gandolfi, J. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, "Fully optimized Cu based process with dedicated cavity etch for 1.75 m and 1.45 m pixel pitch CMOS image sensor," in IEEE International Electron Devices Meeting (2006).
  27. J. Herrmann, "Cross coupling and aliasing in modal wavefront estimation," J. Opt. Soc. Am. 71, 989-992 (1981).
  28. F. J. Rigaut, J.-P. Veran, and O. Lai, "Analytical model for Shack-Hartmann-based adaptive optics systems," Proc. SPIE 3353, 1038-1048 (1998).
    [CrossRef]
  29. L. A. Poyneer and B. Macintosh, "Spatially filtered wavefront sensor for high-order adaptive optics," J. Opt. Soc. Am. A 21, 810-819 (2004).
    [CrossRef]
  30. M. A. van Dam, "Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy," J. Opt. Soc. Am. A 22, 1509-1514 (2005).
    [CrossRef]
  31. R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992).
    [CrossRef]

2006

2005

M. A. van Dam, "Measuring the centroid gain of a Shack-Hartmann quad-cell wavefront sensor by using slope discrepancy," J. Opt. Soc. Am. A 22, 1509-1514 (2005).
[CrossRef]

S. U. Lee, J. L. Park, J. S. Choi, and J. G. Lee, "The fabrication process and characteristics of light loss free zero-space microlenses for CMOS image sensor," Proc. SPIE 5754, 1241-1248 (2005).
[CrossRef]

O. La Schiazza, T. Nirmaier, M. Han, and J. Bille, "A custom CMOS-based Hartmann-Shack wavefront sensor," Invest. Ophthalmol. Visual Sci. 46, 2002-B771 (2005).
[CrossRef]

A. El Gamal and H. Eltoukhy, "CMOS image sensors: an introduction to the technology, design, and performance limits, presenting recent developments and future directions," IEEE Circuits Devices Mag. 21(3), 6-20 (2005).
[CrossRef]

2004

D. W. de Lima Monteiro, G. Vdovin, and P. M. Sarro, "High-speed wavefront sensor compatible with standard CMOS technology," Sens. Actuators A 109, 220-230 (2004).
[CrossRef]

D. A. Baillie and J. E. Gendler, "Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development," Proc. SPIE 5377, 953-959 (2004).
[CrossRef]

J. Vaillant and F. Hirigoyen, "Optical simulation for CMOS imager microlens optimization," Proc. SPIE 5459, 200-210 (2004).
[CrossRef]

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, "Metrology of thin transparent optics using Shack-Hartmann wavefront sensing," Opt. Eng. 43, 742-753 (2004).
[CrossRef]

L. A. Poyneer and B. Macintosh, "Spatially filtered wavefront sensor for high-order adaptive optics," J. Opt. Soc. Am. A 21, 810-819 (2004).
[CrossRef]

2003

H.-J. Hsu, F.-T. Weng, C.-K. Chang, and Y.-K. Hsiao, "Microlens design for compact lens system," Proc. SPIE 5116, 640-646 (2003).
[CrossRef]

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in color CMOS image sensor," IEEE Trans. Electron. Devices 50, 4-11 (2003).
[CrossRef]

2002

S. U. Ay, M. P. Lesser, and E. R. Fossum, "CMOS active pixel sensor (APS) imager for scientific applications," Proc. SPIE 4836, 271-278 (2002).
[CrossRef]

2001

2000

J. D. Mansell, P. B. Catrysse, E. K. Gustafson, and R. L. Byer, "Silicon deformable mirrors and CMOS-based wavefront sensors," Proc. SPIE 4124, 15-25 (2000).
[CrossRef]

Y.-T. Fan, C.-S. Peng, and C.-Y. Chu, "Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors," Proc. SPIE 4115, 263-274 (2000).
[CrossRef]

1998

F. J. Rigaut, J.-P. Veran, and O. Lai, "Analytical model for Shack-Hartmann-based adaptive optics systems," Proc. SPIE 3353, 1038-1048 (1998).
[CrossRef]

1997

1996

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, "Amplitude and phase beam characterization using a two-dimensional wavefront sensor," Proc. SPIE 2870, 72-82 (1996).

1993

E. R. Fossum, "Active pixel sensors: are CCDs dinosaurs?" Proc. SPIE 1900, 2-14 (1993).
[CrossRef]

1992

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, and A. Izumi, "Microlens design using simulation program for CCD image sensor," IEEE Trans. Consumer Electronics 38, 583-589 (1992).
[CrossRef]

R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992).
[CrossRef]

1981

Appl. Opt.

IEEE Circuits Devices Mag.

A. El Gamal and H. Eltoukhy, "CMOS image sensors: an introduction to the technology, design, and performance limits, presenting recent developments and future directions," IEEE Circuits Devices Mag. 21(3), 6-20 (2005).
[CrossRef]

IEEE Trans. Consumer Electronics

M. Deguchi, T. Maruyama, F. Yamasaki, T. Hamamoto, and A. Izumi, "Microlens design using simulation program for CCD image sensor," IEEE Trans. Consumer Electronics 38, 583-589 (1992).
[CrossRef]

IEEE Trans. Electron. Devices

G. Agranov, V. Berezin, and R. H. Tsai, "Cross talk and microlens study in color CMOS image sensor," IEEE Trans. Electron. Devices 50, 4-11 (2003).
[CrossRef]

E. Fossum, "CMOS image sensors: electronic camera-on-a-chip," IEEE Trans. Electron. Devices 44, 1689-1698 (1997).
[CrossRef]

Invest. Ophthalmol. Visual Sci.

O. La Schiazza, T. Nirmaier, M. Han, and J. Bille, "A custom CMOS-based Hartmann-Shack wavefront sensor," Invest. Ophthalmol. Visual Sci. 46, 2002-B771 (2005).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Microelectron. J.

M. Bigas, E. Cabruja, J. Forest, and J. Salvi, "Review of CMOS image sensors," Microelectron. J. 37, 433-451 (2006).
[CrossRef]

Opt. Commun.

T. Y. Chew, R. M. Clare, and R. G. Lane, "A comparison of the Shack-Hartmann and pyramid wavefront sensors," Opt. Commun. 268, 189-195 (2006).
[CrossRef]

Opt. Eng.

C. R. Forest, C. R. Canizares, D. R. Neal, M. McGuirk, and M. L. Schattenburg, "Metrology of thin transparent optics using Shack-Hartmann wavefront sensing," Opt. Eng. 43, 742-753 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

F. J. Rigaut, J.-P. Veran, and O. Lai, "Analytical model for Shack-Hartmann-based adaptive optics systems," Proc. SPIE 3353, 1038-1048 (1998).
[CrossRef]

D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren, "Amplitude and phase beam characterization using a two-dimensional wavefront sensor," Proc. SPIE 2870, 72-82 (1996).

J. D. Mansell, P. B. Catrysse, E. K. Gustafson, and R. L. Byer, "Silicon deformable mirrors and CMOS-based wavefront sensors," Proc. SPIE 4124, 15-25 (2000).
[CrossRef]

E. R. Fossum, "Active pixel sensors: are CCDs dinosaurs?" Proc. SPIE 1900, 2-14 (1993).
[CrossRef]

S. U. Ay, M. P. Lesser, and E. R. Fossum, "CMOS active pixel sensor (APS) imager for scientific applications," Proc. SPIE 4836, 271-278 (2002).
[CrossRef]

S. U. Lee, J. L. Park, J. S. Choi, and J. G. Lee, "The fabrication process and characteristics of light loss free zero-space microlenses for CMOS image sensor," Proc. SPIE 5754, 1241-1248 (2005).
[CrossRef]

Y.-T. Fan, C.-S. Peng, and C.-Y. Chu, "Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors," Proc. SPIE 4115, 263-274 (2000).
[CrossRef]

H.-J. Hsu, F.-T. Weng, C.-K. Chang, and Y.-K. Hsiao, "Microlens design for compact lens system," Proc. SPIE 5116, 640-646 (2003).
[CrossRef]

D. A. Baillie and J. E. Gendler, "Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development," Proc. SPIE 5377, 953-959 (2004).
[CrossRef]

J. Vaillant and F. Hirigoyen, "Optical simulation for CMOS imager microlens optimization," Proc. SPIE 5459, 200-210 (2004).
[CrossRef]

Sens. Actuators A

D. W. de Lima Monteiro, G. Vdovin, and P. M. Sarro, "High-speed wavefront sensor compatible with standard CMOS technology," Sens. Actuators A 109, 220-230 (2004).
[CrossRef]

Waves Random Media

R. G. Lane, A. Glindemann, and J. C. Dainty, "Simulation of a Kolmogorov phase screen," Waves Random Media 2, 209-224 (1992).
[CrossRef]

Other

M. Mori, M. Katsuno, S. Kasuga, T. Murata, T. Yamaguchi, M. Ind, and J. Kyoto, "A 1/4 in. 2M pixel CMOS image sensor with 1.75 transistor/pixel," Dig. Tech. Pap.-IEEE Int. Solid-State Circuits Conf. 1, 110-111 (2004).

M. Cohen, F. Roy, D. Hrault, Y. Cazaux, A. Gandolfi, J. Reynard, C. Cowache, E. Bruno, T. Girault, J. Vaillant, F. Barbier, Y. Sanchez, N. Hotellier, O. LeBorgne, C. Augier, A. Inard, T. Jagueneau, C. Zinck, J. Michailos, and E. Mazaleyrat, "Fully optimized Cu based process with dedicated cavity etch for 1.75 m and 1.45 m pixel pitch CMOS image sensor," in IEEE International Electron Devices Meeting (2006).

M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence (CRC Press, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic and (b) layout of a standard four transistors CMOS pixel.

Fig. 2
Fig. 2

Vertical cut of a standard CMOS pixel (a) under normal incidence and (b) under oblique incidence.

Fig. 3
Fig. 3

(a) Schematic and (b) layout of a standard “1.75” transistor CMOS pixel. Typical offset of the photodiodes on shared architecture is shown as a layout view; here 2 × 2 pixels are represented.

Fig. 4
Fig. 4

eSH principle: for each analysis area the maximum of signal is obtained for a microlens shift equal to the shift introduce by the tilt of the wavefront. (a) For normal incidence plane wave the maximum is centered on the analysis area. (b) For tilted plane wave the maximum is shifted according to Eq. (1).

Fig. 5
Fig. 5

eQC principle: for a normal incidence plane wave the focal spots are placed regularly at the silicon level (dashed circles), for a tilted plane wave, the spots (solid circles) displacement modifies the signal of the pixel, increasing one while decreasing the three others.

Fig. 6
Fig. 6

Response of the eSH wavefront sensor to a plane wave.

Fig. 7
Fig. 7

Sensitivity of (a) eSH and (b) eQC wavefront sensors to tilted plane wave.

Fig. 8
Fig. 8

Random wavefront used for eSH and eQC performances analysis.

Fig. 9
Fig. 9

Basis used to construct random phase screens.

Tables (3)

Tables Icon

Table 1 Figures Used for Wavefront Sensor Simulation

Tables Icon

Table 2 Maximum rms Error on Tilt Estimation between 0 rad and 0.20 rad

Tables Icon

Table 3 rms Error on Local Tilt Estimation of Random Wavefront

Equations (61)

Equations on this page are rendered with MathJax. Learn more.

5   nm
50   nm
N × N
N 1 × N 1
a m
a p
a m = a p ( 1 + 1 / ( N 1 ) )
M × M
M > N
M / N × M / N
δ max
δ t i l t
δ t i l t = h s t a c k   tan [ arcsin ( sin   θ 0 n s t a c k ) ] ,
θ 0
n s t a c k
h s t a c k
N × N
2 × 2
2 × 2
2 × 2
( 2 M + 1 ) × ( 2 M + 1 )
M × M
10 μ m
+ exp [ x 2 + y 2 2 σ 2 ] d x d y = + 4 J 1 2 ( x 2 + y 2 ) x 2 + y 2  d x d y .
σ = 32 3 π 2 π λ h s t a c k π a p .
I ( x , y ) = Φ η   exp [ x 2 + y 2 2 ( 32 3 π 2 π λ h s t a c k π a p ) 2 ] .
σ r e a d o u t 2
( 1 / 2 ) a p × ( 1 / 2 ) a p
( i , j )
δ t i l t x ( i , j )
δ t i l t y ( i , j )
( i , j )
( i , j )
δ μ x ( i , j ) = a p [ Frac ( i N ) 1 2 ] ,
δ μ y ( i , j ) = a p [ Frac ( j N ) 1 2 ] ,
( i , j )
S ( i , j ) = a p 2 + δ t i l t x ( i , j ) + δ μ x ( i , j ) a p 2 + δ t i l t x ( i , j ) + δ μ x ( i , j ) a p 2 + δ t i l t y ( i , j ) + δ μ y ( i , j ) a p 2 + δ t i l t y ( i , j ) + δ μ y ( i , j ) Φ η × exp [ x 2 + y 2 2 ( 32 3 π 2 π λ h s t a c k π a p ) 2 ] d x d y = Φ η [ erf ( a p 2 + δ t i l t x ( i , j ) + δ μ x ( i , j ) 32 3 π π λ h s t a c k π a p ) erf ( a p 2 + δ t i l t x ( i , j ) + δ μ x ( i , j ) 32 3 π π λ h s t a c k π a p ) ] × [ erf ( a p 2 + δ t i l t y ( i , j ) + δ μ y ( i , j ) 32 3 π π λ h s t a c k π a p ) erf ( a p 2 + δ t i l t y ( i , j ) + δ μ y ( i , j ) 32 3 π π λ h s t a c k π a p ) ] .
a m = a p
δ μ x ( i , j )
δ μ y ( i , j )
δ p h x
δ p h y
δ p h x ( i , j ) = { 0.2 a p if   i   is   even + 0.2 a p if   i   is   odd ,
δ p h y ( i , j ) = { 0.2 a p if   j   is   even + 0.2 a p if   j   is   odd .
0.2 a p
( i , j )
S ( i , j ) = a p 2 + δ p h x ( i , j ) a p 2 + δ p h x ( i , j ) a p 2 + δ p h y ( i , j ) a p 2 + δ p h y ( i , j ) Φ η × exp [ x 2 + y 2 2 ( 32 3 π 2 π λ h s t a c k π a p ) 2 ] d x d y = Φ η [ erf ( a p 2 + δ p h x ( i , j ) 32 3 π π λ h s t a c k π a p ) erf ( a p 2 + δ p h x ( i , j ) 32 3 π π λ h s t a c k π a p ) ] × [ erf ( a p 2 + δ p h y ( i , j ) 32 3 π π λ h s t a c k π a p ) erf ( a p 2 + δ p h y ( i , j ) 32 3 π π λ h s t a c k π a p ) ] .
2 × 2
0.2   rad
0   rad
0.2   rad
10 2
σ r e a d o u t = 5 e
± 3 σ
0.2   rad
( 2 M + 1 ) × ( 2 M + 1 )
97 × 10 3   rad
132 × 10 3   rad
7 × 10 3   rad
2 × 2
2 × 2

Metrics