Abstract

A pupil plane imaging (PPI) system has been designed and implemented to measure scintillation induced by atmospheric turbulence and to estimate key parameters of atmospheric turbulence. A high-speed, high-resolution camera images the pupil of a telescope. The process of estimating normalized intensity variance and the underlying rationale is discussed. Experimental results are presented for data taken at North Oscura Peak in southern New Mexico from light originating at Salinas Peak or an aircraft, over near-horizontal paths of 50  km. Strong scintillation is often observed. The results are compared to those of other instruments operating in parallel, and systematic and random errors are discussed. The primary goal is to accurately estimate scintillation strength using PPI in order to assess adaptive optics performance as a function of such scintillation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. E. Gracheva and A. S. Gurvich, "Strong fluctuations in the intensity of light propagated through the atmosphere close to the Earth," Radiophys. Quantum Electron. 8, 511-515 (1965).
  2. G. R. Ochs and R. S. Lawrence, "Saturation of laser-beam scintillation under conditions of strong atmospheric turbulence," J. Opt. Soc. Am. 59, 226-227 (1969).
    [CrossRef]
  3. G. R. Ochs, R. R. Bergman, and J. R. Snyder, "Beam scintillation over horizontal paths from 5.5 to 145 kilometers," J. Opt. Soc. Am. 59, 231-234 (1969).
    [CrossRef]
  4. T. Wang, G. R. Ochs, and S. F. Clifford, "A saturation-resistant optical scintillometer to measure Cn2," J. Opt. Soc. Am. 68, 334-338 (1978).
    [CrossRef]
  5. R. L. Phillips and L. C. Andrews, "Measured statistics of laser-light scattering in atmospheric turbulence," J. Opt. Soc. Am. 71, 1440-1445 (1981).
    [CrossRef]
  6. A. Consortini, E. Briccolani, and G. Conforti, "Strong-scintillation statistics deteriorated due to detector saturation," J. Opt. Soc. Am. A 3, 101-107 (1986).
    [CrossRef]
  7. A. Consortini, F. Conchetti, J. Churnside, and R. Hill, "Inner-scale effect on irradiance variance measured for weak-to-strong atmospheric scintillation," J. Opt. Soc. Am. A 10, 2354-2362 (1993).
    [CrossRef]
  8. S. M. Flatte, G. Y. Wang, and J. Martin, "Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment," J. Opt. Soc. Am. A 10, 2363-2370 (1993).
    [CrossRef]
  9. R. J. Hill and J. H. Churnside, "Observational challenges of strong scintillation of irradiance," J. Opt. Soc. Am. A 5, 445-447 (1988).
    [CrossRef]
  10. V. I. Tatarskii, Wave Propagation in Turbulent Medium (McGraw-Hill, 1961).
  11. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Opt. Soc. Am. 56, 1372-1379 (1966).
    [CrossRef]
  12. R. Butts, M. Whiteley, and D. Washburn, Air Force Research Laboratories, AFRL/DEBA, Bldg. 401, 3550 Aberdeen Ave. SE, Kirtland AFB, N. Mex. 87117, USA (personal communication, 1999).
  13. R. Avila, J. Vernin, and E. Masciadri, "Whole atmospheric-turbulence profiling with generalized scidar," Appl. Opt. 36, 7898-7905 (1997).
    [CrossRef]
  14. V. Kornilov, A. A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. F. Potanin, and M. S. Sarazin, "MASS: a monitor of the vertical turbulence distribution," Proc. SPIE 4839, 837-845 (2003).
    [CrossRef]
  15. S. F. Clifford and H. T. Yura, "Equivalence of two theories of strong optical scintillation," J. Opt. Soc. Am. 64, 1641-1644 (1974).
    [CrossRef]
  16. S. F. Clifford, "The classical theory of wave propagation in a turbulent medium," in Laser Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, 1978), p. 36, Fig. 2.5.
  17. R. L. Fante, "Inner-scale size effect on the scintillations of light in the turbulent atmosphere," J. Opt. Soc. Am. 73, 277-281 (1983).
    [CrossRef]
  18. L. C. Andrews, R. L. Phillips, and B. K. Shivamoggi, "Relations of the parameters of the I-K distribution for irradiance fluctuations to physical parameters of the turbulence," Appl. Opt. 27, 2150-2156 (1988).
    [CrossRef] [PubMed]
  19. R. J. Hill and R. G. Frehlich, "Onset of strong scintillation with application to remote sensing of turbulence inner scale," Appl. Opt. 35, 986-997 (1996).
    [CrossRef] [PubMed]
  20. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and VI. V. Pokasov, "Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation," in Laser Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, 1978), p. 118, Fig. 4.5.
  21. R. J. Hill and R. G. Frehlich, "Probability distribution of irradiance for the onset of strong scintillation," J. Opt. Soc. Am. A 14, 1530-1540 (1997).
    [CrossRef]
  22. F. Conchetti and A. Consortini, "Deconvolution of noise by a numerical method in laser atmospheric scintillation," J. Opt. Soc. Am. A 10, 1984-1988 (1993).
    [CrossRef]

2003 (1)

V. Kornilov, A. A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. F. Potanin, and M. S. Sarazin, "MASS: a monitor of the vertical turbulence distribution," Proc. SPIE 4839, 837-845 (2003).
[CrossRef]

1997 (2)

1996 (1)

1993 (3)

1988 (2)

1986 (1)

1983 (1)

1981 (1)

1978 (1)

1974 (1)

1969 (2)

1966 (1)

1965 (1)

M. E. Gracheva and A. S. Gurvich, "Strong fluctuations in the intensity of light propagated through the atmosphere close to the Earth," Radiophys. Quantum Electron. 8, 511-515 (1965).

Appl. Opt. (3)

J. Opt. Soc. Am. (7)

J. Opt. Soc. Am. A (6)

Proc. SPIE (1)

V. Kornilov, A. A. Tokovinin, O. Vozyakova, A. Zaitsev, N. Shatsky, S. F. Potanin, and M. S. Sarazin, "MASS: a monitor of the vertical turbulence distribution," Proc. SPIE 4839, 837-845 (2003).
[CrossRef]

Radiophys. Quantum Electron. (1)

M. E. Gracheva and A. S. Gurvich, "Strong fluctuations in the intensity of light propagated through the atmosphere close to the Earth," Radiophys. Quantum Electron. 8, 511-515 (1965).

Other (4)

V. I. Tatarskii, Wave Propagation in Turbulent Medium (McGraw-Hill, 1961).

R. Butts, M. Whiteley, and D. Washburn, Air Force Research Laboratories, AFRL/DEBA, Bldg. 401, 3550 Aberdeen Ave. SE, Kirtland AFB, N. Mex. 87117, USA (personal communication, 1999).

S. F. Clifford, "The classical theory of wave propagation in a turbulent medium," in Laser Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, 1978), p. 36, Fig. 2.5.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and VI. V. Pokasov, "Similarity relations and their experimental verification for strong intensity fluctuations of laser radiation," in Laser Propagation in the Atmosphere, J. W. Strohbehn, ed. (Springer-Verlag, 1978), p. 118, Fig. 4.5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Schematic of NOP beam train. See text for an explanation of the figure.

Fig. 2
Fig. 2

Sample fit between measured (dashed) and theory (solid) histograms, using 400 bins.

Fig. 3
Fig. 3

Frame from data set 2230 sal 202. Estimated NIV for this data set is 0.53. Background is estimated at 30% of the mean signal.

Fig. 4
Fig. 4

Histogram of NIV for data sets from days 237 (solid) and 239 (hatched). These histograms should not be confused with the histograms for each data set.

Fig. 5
Fig. 5

(Color online) Scatter plot of on-bench scintillometer NIV estimates ( 2.2   cm aperture) versus PPI NIV estimates. The solid line represents ideal agreement; the dotted line represents a best fit to the data. The circled outliers are discussed in the text.

Fig. 6
Fig. 6

(Color online) Scatter plot of scintillometer NIV estimates (both 2.2   cm aperture and 4 .4   cm aperture) versus PPI NIV estimates for observation of the Salinas beacon only (no aircraft). The solid line represents ideal agreement; the dotted line represents a best fit to the data.

Fig. 7
Fig. 7

(Color online) Scatter plot of on-bench scintillometer NIV estimates ( 2 .2   cm aperture) versus PPI NIV estimates for observation of the aircraft beacon only (no Salinas beacon data). The solid line represents ideal agreement; the dotted line represents a best fit to the data.

Fig. 8
Fig. 8

(Color online) NIV reduction versus detector integration time based on simulation. The dotted curve indicates extrapolated values. See text for simulation details.

Tables (2)

Tables Icon

Table 1 Summary of Processing for Normalized Irradiance Variance

Tables Icon

Table 2 Systematic Errors Present in the Estimates of Normalized Intensity Variance

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

r 0 = [ 0.424 k o 2 0 L C n 2 ( z ) ( 1 z / L ) 5 / 3 ( d z ) ] 3 / 5 ,
σ χ 2 = 0.561 k o 7 / 6 0 L C n 2 ( z ) ( 1 z / L ) 5 / 6 z 5 / 6 d z ,
C ( m , n , i ) = c m Δ x ( m + 1 ) Δ x d x n Δ y ( n + 1 ) Δ y d y i Δ t ( i + 1 ) Δ t d t I ( x , y , t ) ,
NIV i = m , n C ( m , n , i ) 2 / [ m , n C ( m , n , i ) ] 2 1 , ( frame   i ) .
σ χ i 2 = m , n log [ C ( m , n , i ) / C ] 2 / M { m , n log [ C ( m , n , i ) / C ] / M } 2 , ( frame   i ) ,
NIV = exp ( 4 σ χ 2 ) 1.
NIV sp = i NIV i / N ,
NIV t = m , n { i C ( m , n , i ) 2 / [ i C ( m , n , i ) ] 2 1 } / M ,
NIV blk = m , n { m 1 , n 1 , i C ( m + m 1 , n + n 1 , i ) 2 / [ i , m 1 , n 1 C ( m + m 1 , n + n 1 , i ) ] 2 1 } / M b ,
NIV h = min { | H [ C ( m , n , i ) , C o ] Pr [ NIV ] | } .

Metrics