Abstract

An ozone (O3) gas sensor with a sensitivity of parts per 109 (ppb) level and a high level of selectivity based on the resonant photoacoustic effect was developed using an electronically modulated cw CO2 laser beam. Quite different from the standard chopper modulation of a laser beam, here the laser source was electronically modulated to overcome the inherent problem of frequency instability associated with chopper modulation. With electronic modulation, in conjunction with the fast Fourier transform (FFT) of transient signals, we were able to improve significantly the sensitivity of the photoacoustic (PA) system for the detection of O3. In addition to the improved sensitivity, our method proved that the FFT of a laser modulated PA signal could suppress the noise signal generated by spurious window diffused absorption, which in the case of most commonly used lock-in techniques is rather unavoidable. The dependence of the PA signal on various experimental parameters such as buffer gas, laser power, modulation frequency, and trace gas concentration was investigated. In the case of buffer gas, argon proved to be more suitable than nitrogen and helium in terms of enhancing the sensitivity of the system. The limits of detection of O3 using the 9 P(14) CO2 laser line in our PA system are 5 parts per 109 by volume (ppbv) and 14 ppbv with electronic and standard chopper modulation, respectively. This detection limit of O3 is quite applicable for detection of safe levels of O3, at ground level.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. Bliefert, Umweltchemie, VCH Verlagsgesellschaft (Weinheim, 1995).
  2. G. Sonnemann, Ozon: Natürliche Schwankungen und anthropogene Einflüsse (Akademie Verlag Berlin, 1992).
  3. H. Tomiyasu and G. Gordon, "Colorimetric determination of ozone in water based on reaction with bis(terpyridine) iron(II)," Anal. Chem. 56, 752-754 (1984).
    [CrossRef]
  4. M. R. Straka, G. Gordon, and G. E. Pacey, "Residual aqueous ozone determination by gas-diffusion flow-injection analysis," Anal. Chem. 57, 1799-1803 (1985).
    [CrossRef]
  5. H. Bader and J. Hoigne, "Determination of ozone in water by the indigo method--a submitted standard method," Ozone: Sci. Eng. 4, 169-176 (1982).
    [CrossRef]
  6. I. C. Cohen, A. F. Smith, and R. Wood, "Field method for the determination of ozone in the presence of nitrogen dioxide," Analyst (Cambridge, U.K.) 93, 507-511 (1968).
    [CrossRef]
  7. K. Takeuchi and T. Ibusuki, "Quantitative determination of aqueous-phase ozone by chemiluminescence using indigo-5, 5′-disulfonate," Anal. Chem. 61, 619-623 (1989).
    [CrossRef] [PubMed]
  8. R. Guicherit, "Ozone analysis by chemiluminescence measurement," Anal. Bioanal. Chem. 256, 177-182 (1971).
  9. A. Ben-Jebria, S. C. Hu, and J. S. Ultman, "Improvements in a chemiluminescent ozone analyzer for respiratory applications," Rev. Sci. Instrum. 61, 3435-3439 (1990).
    [CrossRef]
  10. U. Schurath, W. Speuser, and R. Schmidt, "Principle and application of a fast sensor for atmospheric ozone," Fresenius J. Anal. Chem. 340, 544-547 (1991).
    [CrossRef]
  11. H. Güsten and U. Schurath, "A novel ozone sensor with various environmental applications," PTB-Mitt. 103, 324-328 (1993).
  12. V. Yushkow, A. Oulanovsky, N. Lechenuk, I. Roudakov, K. Arshinov, F. Tikhonov, and L. Stefanutti, "A chemiluminescent analyzer for stratospheric measurements of the ozone concentration (Fozan)," J. Atmos. Oceanic Technol. 16, 1345-1350 (1999).
    [CrossRef]
  13. S. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode laser sensor for monitoring multiple combustion parameters in pulse detonation engines," Proc. Combust. Inst. 28, 587-594 (2000).
    [CrossRef]
  14. M. G. De Silva, H. Vargas, A. Miklos, and P. Hess, "Photoacoustic detection of ozone using a quantum cascade laser," Appl. Phys. B 78, 677-680 (2004).
    [CrossRef]
  15. L. Menzel, A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, "Spectroscopic detection of biological NO with a quantum cascade laser," Appl. Phys. B 72, 859-863 (2001).
  16. H. S. M. de Vries, M. A. J. Wasano, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, and J. Reuss, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by laser photothermal deflection and photoacoustic techniques," Postharvest Biol. Technol. 8, 1-10 (1996).
    [CrossRef]
  17. D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
    [CrossRef]
  18. P. L. Meyer and M. W. Sigrist, "Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques," Rev. Sci. Instrum. 61, 1779-1807 (1990).
    [CrossRef]
  19. P. V. Cvijin, D. A. Gilmore, and G. H. Atkinson, "Determination of gaseous formic acid and acetic acid by pulsed ultraviolet photoacoustic spectroscopy," Appl. Spectrosc. 42, 770-774 (1988).
    [CrossRef]
  20. I. G. Callasso and M. W. Sigrist, "Selection criteria for microphones used in pulsed nonresonant gas-phase photoacoustics," Rev. Sci. Instrum. 70, 4569-4578 (1999).
    [CrossRef]
  21. M. A.Gondal, M. H. Shwehdi, and M. A. Baig, "Laser sensor for detection of SF6 leaks in high power insulated switchgear systems," IEEE Trans. Dielectr. Electr. Insul. 9, 421-427 (2002).
    [CrossRef]
  22. M. A. Gondal and J. Mastromarino, "Pulsed laser photoacoustic detection of SO2 near 225.7 nm," Appl. Opt. 40, 2010-2016 (2001).
    [CrossRef]
  23. M. A. Gondal, I. A. Bakhtiari, and S. M. A Durrani, "Spectroscopy of trace gases using a pulsed optoacoustic technique," J. Anal. At. Spectrom. 13, 455-458 (1998).
    [CrossRef]
  24. H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, "On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy," Appl. Phys. B 70, 275-280 (2000).
    [CrossRef]
  25. M. A. Gondal, "Laser photoacoustic spectrometer for remote monitoring of atmospheric pollutants," Appl. Opt. 36, 3195-3201 (1997).
    [CrossRef] [PubMed]
  26. M. A. Gondal, A. Dastageer, and M. H. Shwehdi, "Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries," Talanta 62, 131-141 (2004).
    [CrossRef]
  27. P. Hess, "Resonant photoacoustic spectroscopy," in Topics in Current Chemistry (Springer Verlag, 1983), Vol. 111.
  28. C. Horenberger, M. Konig, S. B. Rai, and W. Demtroder, "Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color-center laser at 1.5 μm," Chem. Phys. Lett. 190, 171-177 (1995).
  29. J. Davidson, J. H. Gutow, and R. N. Zare, "Experimental improvements in recording gas-phase photoacoustic spectra," J. Phys. Chem. 94, 4069-4073 (1990).
    [CrossRef]
  30. F. J. M. Harren, J. Reuss, E. J. Woltering, and D. D. Bicanic, "Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level," Appl. Spectrosc. 44, 1360-1368 (1990).
    [CrossRef]
  31. H. S. M. deVries, "Nonintrusive fruit and plant analyses by laser photothermal measurements of ethylene emission," in Fruit and Nut Analyses, H. F. Linskens, ed. (Springer Verlag, 1996), pp. 1-18.
    [CrossRef]
  32. A. Thöny and M. W. Sigrist, "New developments in CO2 laser photoacoustic monitoring of trace gas," Infrared Phys. Technol. 36, 585-615 (1995).
    [CrossRef]
  33. L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
    [CrossRef]

2005 (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

2004 (2)

M. A. Gondal, A. Dastageer, and M. H. Shwehdi, "Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries," Talanta 62, 131-141 (2004).
[CrossRef]

M. G. De Silva, H. Vargas, A. Miklos, and P. Hess, "Photoacoustic detection of ozone using a quantum cascade laser," Appl. Phys. B 78, 677-680 (2004).
[CrossRef]

2002 (1)

M. A.Gondal, M. H. Shwehdi, and M. A. Baig, "Laser sensor for detection of SF6 leaks in high power insulated switchgear systems," IEEE Trans. Dielectr. Electr. Insul. 9, 421-427 (2002).
[CrossRef]

2001 (2)

M. A. Gondal and J. Mastromarino, "Pulsed laser photoacoustic detection of SO2 near 225.7 nm," Appl. Opt. 40, 2010-2016 (2001).
[CrossRef]

L. Menzel, A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, "Spectroscopic detection of biological NO with a quantum cascade laser," Appl. Phys. B 72, 859-863 (2001).

2000 (2)

S. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode laser sensor for monitoring multiple combustion parameters in pulse detonation engines," Proc. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, "On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy," Appl. Phys. B 70, 275-280 (2000).
[CrossRef]

1999 (2)

I. G. Callasso and M. W. Sigrist, "Selection criteria for microphones used in pulsed nonresonant gas-phase photoacoustics," Rev. Sci. Instrum. 70, 4569-4578 (1999).
[CrossRef]

V. Yushkow, A. Oulanovsky, N. Lechenuk, I. Roudakov, K. Arshinov, F. Tikhonov, and L. Stefanutti, "A chemiluminescent analyzer for stratospheric measurements of the ozone concentration (Fozan)," J. Atmos. Oceanic Technol. 16, 1345-1350 (1999).
[CrossRef]

1998 (2)

M. A. Gondal, I. A. Bakhtiari, and S. M. A Durrani, "Spectroscopy of trace gases using a pulsed optoacoustic technique," J. Anal. At. Spectrom. 13, 455-458 (1998).
[CrossRef]

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

1997 (1)

1996 (1)

H. S. M. de Vries, M. A. J. Wasano, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, and J. Reuss, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by laser photothermal deflection and photoacoustic techniques," Postharvest Biol. Technol. 8, 1-10 (1996).
[CrossRef]

1995 (2)

A. Thöny and M. W. Sigrist, "New developments in CO2 laser photoacoustic monitoring of trace gas," Infrared Phys. Technol. 36, 585-615 (1995).
[CrossRef]

C. Horenberger, M. Konig, S. B. Rai, and W. Demtroder, "Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color-center laser at 1.5 μm," Chem. Phys. Lett. 190, 171-177 (1995).

1993 (1)

H. Güsten and U. Schurath, "A novel ozone sensor with various environmental applications," PTB-Mitt. 103, 324-328 (1993).

1991 (1)

U. Schurath, W. Speuser, and R. Schmidt, "Principle and application of a fast sensor for atmospheric ozone," Fresenius J. Anal. Chem. 340, 544-547 (1991).
[CrossRef]

1990 (4)

A. Ben-Jebria, S. C. Hu, and J. S. Ultman, "Improvements in a chemiluminescent ozone analyzer for respiratory applications," Rev. Sci. Instrum. 61, 3435-3439 (1990).
[CrossRef]

P. L. Meyer and M. W. Sigrist, "Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques," Rev. Sci. Instrum. 61, 1779-1807 (1990).
[CrossRef]

J. Davidson, J. H. Gutow, and R. N. Zare, "Experimental improvements in recording gas-phase photoacoustic spectra," J. Phys. Chem. 94, 4069-4073 (1990).
[CrossRef]

F. J. M. Harren, J. Reuss, E. J. Woltering, and D. D. Bicanic, "Photoacoustic measurements of agriculturally interesting gases and detection of C2H4 below the ppb level," Appl. Spectrosc. 44, 1360-1368 (1990).
[CrossRef]

1989 (1)

K. Takeuchi and T. Ibusuki, "Quantitative determination of aqueous-phase ozone by chemiluminescence using indigo-5, 5′-disulfonate," Anal. Chem. 61, 619-623 (1989).
[CrossRef] [PubMed]

1988 (1)

1985 (1)

M. R. Straka, G. Gordon, and G. E. Pacey, "Residual aqueous ozone determination by gas-diffusion flow-injection analysis," Anal. Chem. 57, 1799-1803 (1985).
[CrossRef]

1984 (1)

H. Tomiyasu and G. Gordon, "Colorimetric determination of ozone in water based on reaction with bis(terpyridine) iron(II)," Anal. Chem. 56, 752-754 (1984).
[CrossRef]

1982 (1)

H. Bader and J. Hoigne, "Determination of ozone in water by the indigo method--a submitted standard method," Ozone: Sci. Eng. 4, 169-176 (1982).
[CrossRef]

1971 (1)

R. Guicherit, "Ozone analysis by chemiluminescence measurement," Anal. Bioanal. Chem. 256, 177-182 (1971).

1968 (1)

I. C. Cohen, A. F. Smith, and R. Wood, "Field method for the determination of ozone in the presence of nitrogen dioxide," Analyst (Cambridge, U.K.) 93, 507-511 (1968).
[CrossRef]

Anal. Bioanal. Chem. (1)

R. Guicherit, "Ozone analysis by chemiluminescence measurement," Anal. Bioanal. Chem. 256, 177-182 (1971).

Anal. Chem. (3)

K. Takeuchi and T. Ibusuki, "Quantitative determination of aqueous-phase ozone by chemiluminescence using indigo-5, 5′-disulfonate," Anal. Chem. 61, 619-623 (1989).
[CrossRef] [PubMed]

H. Tomiyasu and G. Gordon, "Colorimetric determination of ozone in water based on reaction with bis(terpyridine) iron(II)," Anal. Chem. 56, 752-754 (1984).
[CrossRef]

M. R. Straka, G. Gordon, and G. E. Pacey, "Residual aqueous ozone determination by gas-diffusion flow-injection analysis," Anal. Chem. 57, 1799-1803 (1985).
[CrossRef]

Analyst (1)

I. C. Cohen, A. F. Smith, and R. Wood, "Field method for the determination of ozone in the presence of nitrogen dioxide," Analyst (Cambridge, U.K.) 93, 507-511 (1968).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (4)

H. Danke, J. Kahl, G. Shuler, W. Boland, W. Urban, and F. Kuhnemann, "On-line monitoring of biogenic isoprene emissions using photoacoustic spectroscopy," Appl. Phys. B 70, 275-280 (2000).
[CrossRef]

M. G. De Silva, H. Vargas, A. Miklos, and P. Hess, "Photoacoustic detection of ozone using a quantum cascade laser," Appl. Phys. B 78, 677-680 (2004).
[CrossRef]

L. Menzel, A. A. Kosterev, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and W. Urban, "Spectroscopic detection of biological NO with a quantum cascade laser," Appl. Phys. B 72, 859-863 (2001).

D. D. Nelson, M. S. Zahniser, J. B. McManus, C. E. Kolb, and J. L. Jiménez, "A tunable diode laser system for the remote sensing of on-road vehicle emissions," Appl. Phys. B 67, 433-441 (1998).
[CrossRef]

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

C. Horenberger, M. Konig, S. B. Rai, and W. Demtroder, "Sensitive photoacoustic overtone spectroscopy of acetylene with a multipass photoacoustic cell and a color-center laser at 1.5 μm," Chem. Phys. Lett. 190, 171-177 (1995).

Fresenius J. Anal. Chem. (1)

U. Schurath, W. Speuser, and R. Schmidt, "Principle and application of a fast sensor for atmospheric ozone," Fresenius J. Anal. Chem. 340, 544-547 (1991).
[CrossRef]

IEEE Trans. Dielectr. Electr. Insul. (1)

M. A.Gondal, M. H. Shwehdi, and M. A. Baig, "Laser sensor for detection of SF6 leaks in high power insulated switchgear systems," IEEE Trans. Dielectr. Electr. Insul. 9, 421-427 (2002).
[CrossRef]

Infrared Phys. Technol. (1)

A. Thöny and M. W. Sigrist, "New developments in CO2 laser photoacoustic monitoring of trace gas," Infrared Phys. Technol. 36, 585-615 (1995).
[CrossRef]

J. Anal. At. Spectrom. (1)

M. A. Gondal, I. A. Bakhtiari, and S. M. A Durrani, "Spectroscopy of trace gases using a pulsed optoacoustic technique," J. Anal. At. Spectrom. 13, 455-458 (1998).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

V. Yushkow, A. Oulanovsky, N. Lechenuk, I. Roudakov, K. Arshinov, F. Tikhonov, and L. Stefanutti, "A chemiluminescent analyzer for stratospheric measurements of the ozone concentration (Fozan)," J. Atmos. Oceanic Technol. 16, 1345-1350 (1999).
[CrossRef]

J. Phys. Chem. (1)

J. Davidson, J. H. Gutow, and R. N. Zare, "Experimental improvements in recording gas-phase photoacoustic spectra," J. Phys. Chem. 94, 4069-4073 (1990).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, D. Jacquemart, A. Barbe, D. C. Benner, M. Birk, L. R. Brown, M. R. Carleer, C. Chackerian, Jr., K. Chance, V. Dana, V. M. Devi, J.-M. Flaud, R. R. Gamache, A. Goldman, J.-M. Hartmann, K. W. Jucks, A. G. Maki, J.-Y. Mandin, S. T. Massie, J. Orphal, A. Perrin, C. P. Rinsland, M. A. H. Smith, J. Tennyson, R. N. Tolchenov, R. A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 Molecular Spectroscopic Database," J. Quant. Spectrosc. Radiat. Transfer 96, 139-204 (2005).
[CrossRef]

Ozone: Sci. Eng. (1)

H. Bader and J. Hoigne, "Determination of ozone in water by the indigo method--a submitted standard method," Ozone: Sci. Eng. 4, 169-176 (1982).
[CrossRef]

Postharvest Biol. Technol. (1)

H. S. M. de Vries, M. A. J. Wasano, F. J. M. Harren, E. J. Woltering, H. C. P. M. van der Valk, and J. Reuss, "Ethylene and CO2 emission rates and pathways in harvested fruits investigated by laser photothermal deflection and photoacoustic techniques," Postharvest Biol. Technol. 8, 1-10 (1996).
[CrossRef]

Proc. Combust. Inst. (1)

S. Sanders, J. A. Baldwin, T. P. Jenkins, D. S. Baer, and R. K. Hanson, "Diode laser sensor for monitoring multiple combustion parameters in pulse detonation engines," Proc. Combust. Inst. 28, 587-594 (2000).
[CrossRef]

PTB-Mitt. (1)

H. Güsten and U. Schurath, "A novel ozone sensor with various environmental applications," PTB-Mitt. 103, 324-328 (1993).

Rev. Sci. Instrum. (3)

P. L. Meyer and M. W. Sigrist, "Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques," Rev. Sci. Instrum. 61, 1779-1807 (1990).
[CrossRef]

A. Ben-Jebria, S. C. Hu, and J. S. Ultman, "Improvements in a chemiluminescent ozone analyzer for respiratory applications," Rev. Sci. Instrum. 61, 3435-3439 (1990).
[CrossRef]

I. G. Callasso and M. W. Sigrist, "Selection criteria for microphones used in pulsed nonresonant gas-phase photoacoustics," Rev. Sci. Instrum. 70, 4569-4578 (1999).
[CrossRef]

Talanta (1)

M. A. Gondal, A. Dastageer, and M. H. Shwehdi, "Photoacoustic spectrometry for trace gas analysis and leak detection using different cell geometries," Talanta 62, 131-141 (2004).
[CrossRef]

Other (4)

P. Hess, "Resonant photoacoustic spectroscopy," in Topics in Current Chemistry (Springer Verlag, 1983), Vol. 111.

H. S. M. deVries, "Nonintrusive fruit and plant analyses by laser photothermal measurements of ethylene emission," in Fruit and Nut Analyses, H. F. Linskens, ed. (Springer Verlag, 1996), pp. 1-18.
[CrossRef]

C. Bliefert, Umweltchemie, VCH Verlagsgesellschaft (Weinheim, 1995).

G. Sonnemann, Ozon: Natürliche Schwankungen und anthropogene Einflüsse (Akademie Verlag Berlin, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of the experimental setup for detection of ozone.

Fig. 2
Fig. 2

Typical photoacoustic spectrum of O 3 recorded by filling 300 ppm O 3 buffered in nitrogen at a total pressure of 760 Torr.

Fig. 3
Fig. 3

Typical photoacoustic spectrum recorded with chopper by filling 300 ppm O 3 buffered in N at total pressure of 760 Torr. Here the CO 2 laser line was 10 P(14) and the laser power was 2 W.

Fig. 4
Fig. 4

Typical photoacoustic spectrum recorded with electronic modulation by filling 300 ppm O 3 buffered in N at total pressure of 760 Torr. Here the CO 2 laser line was 10 P(14) and the laser power was 2 W.

Fig. 5
Fig. 5

Buffer gas (N) pressure dependence on photoacoustic signal. Relative concentration of O 3 was kept constant.

Fig. 6
Fig. 6

(Color online) Effect of the nature of the buffer gas on the PA signal. Here the PA signal versus the O 3 concentration buffered in Ar, N 2 , and He at a total pressure of 760 Torr is plotted. The CO 2 laser line was 10 P(14) and the laser power was 2 W.

Fig. 7
Fig. 7

(Color online) Calibration curve for O 3 concentration.

Fig. 8
Fig. 8

Noise level recorded by filling a PA cell at 1 atm of N with a laser power of 1 W using electronic modulation.

Fig. 9
Fig. 9

Noise level recorded by filling a PA cell at 1 atm of N with a laser power of 1 W using chopper modulation.

Fig. 10
Fig. 10

Power dependence of the laser signal with P(14) laser line Ar as the buffer gas.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ν n , m , n z = v 2 [ ( α m n R ) 2 + ( n z L ) 2 ] 1 / 2 ,
h v ( < 280 nm ) + O 2 O + O ,
2 O + 2 O 2 2 O 3 .
S P A N 0 F m i c σ l P C v ( A + k v t M ) ,

Metrics