Abstract

A practical grating mosaic method is proposed based on quantitative image processing of three far-field diffraction intensity patterns in two wavelengths. This method aims at making a perfect mosaic of two planar gratings that can substitute for a single and larger grating without introducing wavefront aberration at any wavelength. The zeroth-order and first-order far-field patterns of one wavelength are analyzed for separating and eliminating the angular mosaic errors. The first-order far-field patterns of two wavelengths are applied for separation of the lateral and longitudinal phase errors. Then the three patterns are considered together to enlarge the target range of coarse adjustment required for further fine adjustment in longitudinal position. Experimentally, angular and positional detection sensitivities of less than 6μrad and 14  nm were achieved, respectively, and the periodicity in positional adjustment was checked, which departed less than 1.8% from the theoretical period. The performance of the perfect mosaic grating was diagnosed with the far-field diffraction intensity pattern in a third wavelength, and the necessity for a perfect mosaic was verified.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).
  2. J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).
  3. J. Bunkenburg, T. J. Kessler, W. Skulski, and H. Huang, "Phase-locked control of tiled-grating assemblies for chirped-pulse-amplified lasers using a Mach-Zehnder interferometer," Opt. Lett. 31, 1561-1563 (2006).
    [CrossRef] [PubMed]
  4. T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, "Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers," Opt. Lett. 29, 635-637 (2004).
    [CrossRef] [PubMed]
  5. LLE Review 100 (Laboratory for Laser Energetics), http://www.llc.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-100.html.
  6. M. C. Rushford, W. A. Molander, J. D. Nissen, I. Jovanovic, J. A. Britten, and C. P. J. Barty, "Diffraction grating eigenvector for translational and rotational motion," Opt. Lett. 31, 155-157 (2006).
    [CrossRef] [PubMed]
  7. T. J. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
    [CrossRef]
  8. S. Montant, G. Marre, N. Blanchot, C. Rouyer, L. Videau, and C. Sauteret, "3D numerical model for a focal plane view in case of mosaic grating compressor for high energy CPA chain," Opt. Express 14, 12532-12545 (2006).
    [CrossRef] [PubMed]
  9. T. Harimoto, "Far-Field Pattern Analysis for an Array Grating Compressor," Jpn. J. Appl. Phys. 43, 1362-1365 (2004).
    [CrossRef]
  10. S. Mousset, C. Rouyer, G. Marre, and N. Blanchot, "Piston measurement by quadriwave lateral shearing interferometry," Opt. Lett. 31, 2634-2636 (2006).
    [CrossRef] [PubMed]
  11. L. Zeng and L. Li, "Method of making mosaic gratings by using a two-color heterodyne interferometer containing a reference grating," Opt. Lett. 31, 152-154 (2006).
    [CrossRef] [PubMed]
  12. Y. Hu, L. Zeng, and L. Li, "Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths," Opt. Commun. 269, 285-290 (2007).
    [CrossRef]
  13. Y. Zuo, X. Wei, X. Wang, Q. Zhu, R. Ren, Z. Huang, H. Liu, and C. Ying, "Eliminating the longitudinal piston error between tiled gratings by angle tuning," Opt. Lett. 32, 280-282 (2007).
    [CrossRef] [PubMed]

2007 (2)

Y. Hu, L. Zeng, and L. Li, "Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths," Opt. Commun. 269, 285-290 (2007).
[CrossRef]

Y. Zuo, X. Wei, X. Wang, Q. Zhu, R. Ren, Z. Huang, H. Liu, and C. Ying, "Eliminating the longitudinal piston error between tiled gratings by angle tuning," Opt. Lett. 32, 280-282 (2007).
[CrossRef] [PubMed]

2006 (6)

2004 (2)

1998 (1)

T. J. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

1995 (1)

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Barty, C.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Barty, C. P. J.

Blanchot, N.

S. Montant, G. Marre, N. Blanchot, C. Rouyer, L. Videau, and C. Sauteret, "3D numerical model for a focal plane view in case of mosaic grating compressor for high energy CPA chain," Opt. Express 14, 12532-12545 (2006).
[CrossRef] [PubMed]

S. Mousset, C. Rouyer, G. Marre, and N. Blanchot, "Piston measurement by quadriwave lateral shearing interferometry," Opt. Lett. 31, 2634-2636 (2006).
[CrossRef] [PubMed]

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Blasiak, T.

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Borneis, S.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Britten, J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Britten, J. A.

Bunkenburg, J.

Danson, C.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Dawson, J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Harimoto, T.

T. Harimoto, "Far-Field Pattern Analysis for an Array Grating Compressor," Jpn. J. Appl. Phys. 43, 1362-1365 (2004).
[CrossRef]

Hoose, J.

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Hu, Y.

Y. Hu, L. Zeng, and L. Li, "Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths," Opt. Commun. 269, 285-290 (2007).
[CrossRef]

Huang, H.

Huang, Z.

Jovanovic, I.

M. C. Rushford, W. A. Molander, J. D. Nissen, I. Jovanovic, J. A. Britten, and C. P. J. Barty, "Diffraction grating eigenvector for translational and rotational motion," Opt. Lett. 31, 155-157 (2006).
[CrossRef] [PubMed]

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Jungquist, R.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Kato, Y.

T. J. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Kelly, J. H.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Kessler, T. J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

J. Bunkenburg, T. J. Kessler, W. Skulski, and H. Huang, "Phase-locked control of tiled-grating assemblies for chirped-pulse-amplified lasers using a Mach-Zehnder interferometer," Opt. Lett. 31, 1561-1563 (2006).
[CrossRef] [PubMed]

T. J. Kessler, J. Bunkenburg, H. Huang, A. Kozlov, and D. D. Meyerhofer, "Demonstration of coherent addition of multiple gratings for high-energy chirped-pulse-amplified lasers," Opt. Lett. 29, 635-637 (2004).
[CrossRef] [PubMed]

Kozlov, A.

Kruschwitz, B.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

LeBlanc, C.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

LeGarrec, B.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Li, L.

Y. Hu, L. Zeng, and L. Li, "Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths," Opt. Commun. 269, 285-290 (2007).
[CrossRef]

L. Zeng and L. Li, "Method of making mosaic gratings by using a two-color heterodyne interferometer containing a reference grating," Opt. Lett. 31, 152-154 (2006).
[CrossRef] [PubMed]

Liu, H.

Loewen, E.

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Marre, G.

Meyerhofer, D. D.

Miyanaga, N.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Molander, W. A.

Montant, S.

Moses, E.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Mousset, S.

Nissen, J. D.

Rambo, P. K.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Ren, R.

Rouyer, C.

Rushford, M. C.

Sauteret, C.

Schmid, A. W.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Skulski, W.

Sroda, T.

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Videau, L.

Wang, X.

Waxer, L. J.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Wei, X.

Wiley, R.

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Ying, C.

Yonemura, M.

T. J. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Zeng, L.

Y. Hu, L. Zeng, and L. Li, "Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths," Opt. Commun. 269, 285-290 (2007).
[CrossRef]

L. Zeng and L. Li, "Method of making mosaic gratings by using a two-color heterodyne interferometer containing a reference grating," Opt. Lett. 31, 152-154 (2006).
[CrossRef] [PubMed]

Zhang, T. J.

T. J. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Zheleznyak, S.

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Zhu, Q.

Zuegel, J. D.

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Zuo, Y.

Fusion Sci. Technol. (1)

J. D. Zuegel, S. Borneis, C. Barty, B. LeGarrec, C. Danson, N. Miyanaga, P. K. Rambo, C. LeBlanc, T. J. Kessler, A. W. Schmid, L. J. Waxer, J. H. Kelly, B. Kruschwitz, R. Jungquist, E. Moses, J. Britten, I. Jovanovic, J. Dawson, and N. Blanchot, "Laser challenges for fast ignition," Fusion Sci. Technol. 49, 453-482 (2006).

Jpn. J. Appl. Phys. (1)

T. Harimoto, "Far-Field Pattern Analysis for an Array Grating Compressor," Jpn. J. Appl. Phys. 43, 1362-1365 (2004).
[CrossRef]

Opt. Commun. (2)

Y. Hu, L. Zeng, and L. Li, "Method to mosaic gratings that relies on analysis of far-field intensity patterns in two wavelengths," Opt. Commun. 269, 285-290 (2007).
[CrossRef]

T. J. Zhang, M. Yonemura, and Y. Kato, "An array-grating compressor for high-power chirped-pulse amplification lasers," Opt. Commun. 145, 367-376 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Photonics Spectra (1)

J. Hoose, E. Loewen, R. Wiley, T. Blasiak, S. Zheleznyak, and T. Sroda, "Grand Gratings: Bigger Is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (1995).

Other (1)

LLE Review 100 (Laboratory for Laser Energetics), http://www.llc.rochester.edu/03_publications/03_01_review/pastreviews/lle-review-100.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Definition of the mosaic errors.

Fig. 2
Fig. 2

(Color online) Numerical simulations of typical far-field diffraction intensity patterns with different mosaic errors [(d)–(f) for sensitivity estimation]: (a) Φ = 0 , ε x = 0 , ε y = 0 ; (b) Φ = π , ε x = 0 , ε y = 0 ; (c) Φ = π , ε x = 20 μ rad , ε y = 20 μ rad ; (d) Φ = π , Δ θ x = 10 μ rad , Δ θ y = 10 μ rad , Δ θ z = 0 ; (e) Φ = π , Δ θ x = 0 , Δ θ y = 10 μ rad , Δ θ z = 10 μ rad ; (f) Φ = 24 π / 25 , Δ θ x = 0 , Δ θ y = 0 , Δ θ z = 0 .

Fig. 3
Fig. 3

(Color online) Numerical simulation of far-field patterns in phase-compensative mosaic: (a) Δ z = 2.00 μ m , Δ x = 3.78 μ m , ε x = 0 , ε y = 0 ; (b) Δ z = 41.14 μ m , Δ x = 77.70 μ m , ε x = 0 , ε y = 0 .

Fig. 4
Fig. 4

(Color online) Configuration of the experimental system.

Fig. 5
Fig. 5

Plot of the relationship between positional adjustment and piston phase change.

Fig. 6
Fig. 6

Experimental images of perfect mosaic and phase-compensative mosaic: (a) Perfect mosaic; (b) piston-phase-compensative mosaic when Δ z = 2.00 μ m ; (c) piston-phase-compensative mosaic when Δ z = 41.10 μ m .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( X , Y , Z , t ) = E 1 ( X , Y , Z , t ) + E 2 ( X , Y , Z , t ) .
E 1 ( X , Y , Z , t ) = A ( X , Y ) exp ( i ω t ) , ( X < 0 ) ,
E 2 ( X , Y , Z , t ) A ( X , Y ) exp [ i ω t + i k ( X ε X + Y ε Y ) + i Φ ] , ( X 0 ) ,
ε X = Δ θ y cos   β ( cos   α + cos   β ) ,
ε Y = Δ θ x ( cos   α + cos   β ) + Δ θ z ( sin   α + sin   β ) ,
Φ = k [ Δ x ( sin   α + sin   β ) Δ z ( cos   α + cos   β ) ] .
Φ = 2 π d Δ x k ( cos   α + cos   β ) Δ z ,
λ ¯ = | cos   α 1 1 + cos   β 1 1 λ 1 cos   α 2 1 + cos   β 2 1 λ 2 | 1 ,
| n 1 λ ¯ n 2 λ i 0 | λ i 0 ε ,

Metrics