Abstract

To generate petawatt pulses using the Vulcan Nd:glass laser requires a broad bandwidth high-gain preamplifier. The preamplifier used is an optical parametric amplifier that provides a total gain of 108 in three amplification stages. We report on a detailed investigation of the effect of the Vulcan optical parametric chirped pulse amplification (OPCPA) preamplifier on contrast caused by the amplified spontaneous emission (ASE) pedestal that extends up to 2 ns before the arrival of the main pulse. The contrast after compression is improved to 4×108 of the intensity of the main pulse using near-field apertures between the stages of the OPCPA preamplifier. Further reduction of the level of the ASE pedestal can be achieved at the cost of a reduction in amplified bandwidth by solely phosphate glass amplification after initial preamplification rather than a mixed glass amplification scheme.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J.–P. Chambaret, F. Augé–Rochereau, G. Cheriaux, J. Etchepare, N. Minkovski, S. M. Saltiel, “10−8 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920–922 (2005).
    [CrossRef] [PubMed]
  2. D. Homoelle, A. L. Gaeta, V. Yanovsky, G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27, 1646–1648 (2002).
    [CrossRef]
  3. A. Jullien, F. Augé–Rochereau, G. Cheriaux, J.–P. Chambaret, P. d'Oliveira, T. Auguste, F. Falcoz, “High-efficiency, simple setup for pulse cleaning at the millijoule level by nonlinear induced birefringence,” Opt. Lett. 29, 2184–2186 (2004).
    [CrossRef] [PubMed]
  4. A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
    [CrossRef]
  5. J. Collier, C. Hernandez–Gomez, “Double Decker” Stretcher Design for the Petawatt Upgrade, CLF Annual Rep. 2001–2002 (Central Laser Facility, Rutherford Appleton Laboratory, 2002), pp. 173–174.
  6. S. Hawkes, J. Collier, C. Danson, C. Hernandez-Gomez, Mixed Glass Rod Amplifier Chain—Design and Implementation, CLF Annual Rep. 2003–2004 (CCLRC Rutherford Appleton Laboratory, 2004), pp. 169–171.
  7. I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
    [CrossRef]
  8. J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
    [CrossRef]

2005 (2)

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J.–P. Chambaret, F. Augé–Rochereau, G. Cheriaux, J. Etchepare, N. Minkovski, S. M. Saltiel, “10−8 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920–922 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

1998 (1)

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

1997 (1)

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Albert, O.

Augé–Rochereau, F.

Auguste, T.

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

A. Jullien, F. Augé–Rochereau, G. Cheriaux, J.–P. Chambaret, P. d'Oliveira, T. Auguste, F. Falcoz, “High-efficiency, simple setup for pulse cleaning at the millijoule level by nonlinear induced birefringence,” Opt. Lett. 29, 2184–2186 (2004).
[CrossRef] [PubMed]

Burgy, F.

Chambaret, J.–P.

Chamberet, J.–P.

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

Cheriaux, G.

Chériaux, G.

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

Collier, J.

J. Collier, C. Hernandez–Gomez, “Double Decker” Stretcher Design for the Petawatt Upgrade, CLF Annual Rep. 2001–2002 (Central Laser Facility, Rutherford Appleton Laboratory, 2002), pp. 173–174.

S. Hawkes, J. Collier, C. Danson, C. Hernandez-Gomez, Mixed Glass Rod Amplifier Chain—Design and Implementation, CLF Annual Rep. 2003–2004 (CCLRC Rutherford Appleton Laboratory, 2004), pp. 169–171.

Collier, J. L.

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Danson, C.

S. Hawkes, J. Collier, C. Danson, C. Hernandez-Gomez, Mixed Glass Rod Amplifier Chain—Design and Implementation, CLF Annual Rep. 2003–2004 (CCLRC Rutherford Appleton Laboratory, 2004), pp. 169–171.

D'Oliveira, P.

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

A. Jullien, F. Augé–Rochereau, G. Cheriaux, J.–P. Chambaret, P. d'Oliveira, T. Auguste, F. Falcoz, “High-efficiency, simple setup for pulse cleaning at the millijoule level by nonlinear induced birefringence,” Opt. Lett. 29, 2184–2186 (2004).
[CrossRef] [PubMed]

Etchepare, J.

Falcoz, F.

Faure, J.

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

Gaeta, A. L.

Hamoniaux, G.

Hawkes, S.

S. Hawkes, J. Collier, C. Danson, C. Hernandez-Gomez, Mixed Glass Rod Amplifier Chain—Design and Implementation, CLF Annual Rep. 2003–2004 (CCLRC Rutherford Appleton Laboratory, 2004), pp. 169–171.

Hernandez-Gomez, C.

S. Hawkes, J. Collier, C. Danson, C. Hernandez-Gomez, Mixed Glass Rod Amplifier Chain—Design and Implementation, CLF Annual Rep. 2003–2004 (CCLRC Rutherford Appleton Laboratory, 2004), pp. 169–171.

Hernandez–Gomez, C.

J. Collier, C. Hernandez–Gomez, “Double Decker” Stretcher Design for the Petawatt Upgrade, CLF Annual Rep. 2001–2002 (Central Laser Facility, Rutherford Appleton Laboratory, 2002), pp. 173–174.

Homoelle, D.

Itatani, J.

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

Jullien, A.

Langley, A. J.

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Matousek, P.

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Minkovski, N.

Mourou, G.

D. Homoelle, A. L. Gaeta, V. Yanovsky, G. Mourou, “Pulse contrast enhancement of high-energy pulses by use of a gas-filled hollow waveguide,” Opt. Lett. 27, 1646–1648 (2002).
[CrossRef]

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

Nantel, M.

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

Planchon, T.

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

Renault, A.

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

Ross, I. N.

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Rousseau, J. P.

Saltiel, S. M.

Towerie, M.

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

Watanabe, S.

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

Yanovsky, V.

Opt. Commun. (3)

I. N. Ross, P. Matousek, M. Towerie, A. J. Langley, J. L. Collier, “The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplification,” Opt. Commun. 144, 125–133 (1997).
[CrossRef]

J. Itatani, J. Faure, M. Nantel, G. Mourou, S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998).
[CrossRef]

A. Renault, F. Augé–Rochereau, T. Planchon, P. D'Oliveira, T. Auguste, G. Chériaux, J.–P. Chamberet, “ASE contrast improvement with a nonlinear filtering Sagnac interferometer,” Opt. Commun. 248, 535–541 (2005).
[CrossRef]

Opt. Lett. (3)

Other (2)

J. Collier, C. Hernandez–Gomez, “Double Decker” Stretcher Design for the Petawatt Upgrade, CLF Annual Rep. 2001–2002 (Central Laser Facility, Rutherford Appleton Laboratory, 2002), pp. 173–174.

S. Hawkes, J. Collier, C. Danson, C. Hernandez-Gomez, Mixed Glass Rod Amplifier Chain—Design and Implementation, CLF Annual Rep. 2003–2004 (CCLRC Rutherford Appleton Laboratory, 2004), pp. 169–171.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the Vulcan Nd:glass laser.

Fig. 2
Fig. 2

Schematic of the contrast measuring arrangement.

Fig. 3
Fig. 3

(Color online) Schematic of the Vulcan OPCPA.

Fig. 4
Fig. 4

ASE pedestal after compression.

Fig. 5
Fig. 5

Effect of stage gain on ASE pedestal.

Fig. 6
Fig. 6

Influence of spectral filtering. Solid curve is using the mixed glass rod amplifier chain. Dotted curve is for the phosphate-only amplifier chain.

Fig. 7
Fig. 7

Influence of near-field apertures. Dotted curve is recorded ASE level without an aperture, the dashed curve is for a 1.1   mm diameter aperture, and the solid curve is for a 1.0   mm aperture.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f ( t ) = 1 2 π σ opt   exp ( ( t μ 1 ) 2 σ opt 2 ) ,
g ( t ) = 1 2 π σ res   exp ( ( t μ 2 ) 2 σ res 2 ) .
c ( t ) = 1 2 π ( σ opt 2 + σ res 2 )   exp ( ( t ( μ 1 + μ 2 ) ) 2 2 ( σ opt 2 + σ res 2 ) ) .
f c = σ opt 2 + σ res 2 σ res .
I ASE = 4 π θ 2 h ν Δ ν λ 2 G 0 ,

Metrics