Abstract

Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Webster, R. T. Menzies, and E. D. Hinkley, "Infrared laser absorption: theory and applications," Laser Remote Chemical Analysis,R.M.Measures, ed. (Wiley, 1988), Chap. 3.
  2. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
    [CrossRef] [PubMed]
  3. C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
    [CrossRef]
  4. A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
    [CrossRef]
  5. J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
    [CrossRef]
  6. R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells," Superlattices Microstruct. 17, 77-83 (1995).
    [CrossRef]
  7. J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
    [CrossRef]
  8. R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
    [CrossRef]
  9. R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005).
    [CrossRef]
  10. W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
    [CrossRef]
  11. K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
    [CrossRef]
  12. M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
    [CrossRef]
  13. G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000).
    [CrossRef]
  14. D. R. Herriott and H. J. Schulte, "Folded optical delay lines," Appl. Opt. 4, 883-889 (1965).
    [CrossRef]
  15. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, "Astigmatic mirror multpass absorption cells for long-path-length spectroscopy," Appl. Opt. 34, 3336-3348 (1995).
    [CrossRef] [PubMed]
  16. V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004).
    [CrossRef]
  17. C. R. Webster, "Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy," Appl. Opt. 44, 1226-1235 (2005).
    [CrossRef] [PubMed]
  18. H. Kogelnik and T. Li, "Laser beams and resonators," Appl. Opt. 5, 1550-1567 (1966).
    [CrossRef] [PubMed]
  19. D. Herriott, H. Kogelnik, and R. Kompfner, "Off-axis paths in spherical mirror interferometers," Appl. Opt. 3, 523-526 (1964).
    [CrossRef]
  20. J. B. McManus and P. L. Kebabian, "Narrow optical interference fringes for certain setup conditions in multipass absorption cells of the Herriott type," Appl. Opt. 29, 898-900 (1990).
    [CrossRef] [PubMed]
  21. G. Moreau, C. Robert, V. Catoire, M. Chartier, C. Camy-Peyret, N. Huret, M. Pirre, L. Pomathiod, and G. Chalumeau, "SPIRALE: a multispecies in situ balloonborne instrument with six tunable diode laser spectrometers," Appl. Opt. 44, 5972-5989 (2005).
    [CrossRef] [PubMed]
  22. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall, "Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, N2O, CH4, NO2, and HNO3," Appl. Opt. 33, 454-472 (1994).
    [CrossRef] [PubMed]

2006 (3)

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

2005 (4)

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005).
[CrossRef]

C. R. Webster, "Measuring methane and its isotopes 12CH4, 13CH4, and CH3D on the surface of Mars with in situ laser spectroscopy," Appl. Opt. 44, 1226-1235 (2005).
[CrossRef] [PubMed]

G. Moreau, C. Robert, V. Catoire, M. Chartier, C. Camy-Peyret, N. Huret, M. Pirre, L. Pomathiod, and G. Chalumeau, "SPIRALE: a multispecies in situ balloonborne instrument with six tunable diode laser spectrometers," Appl. Opt. 44, 5972-5989 (2005).
[CrossRef] [PubMed]

2004 (2)

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004).
[CrossRef]

2000 (1)

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

1998 (2)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
[CrossRef]

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

1996 (1)

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

1995 (2)

1994 (2)

1990 (1)

1988 (1)

C. R. Webster, R. T. Menzies, and E. D. Hinkley, "Infrared laser absorption: theory and applications," Laser Remote Chemical Analysis,R.M.Measures, ed. (Wiley, 1988), Chap. 3.

1966 (1)

1965 (1)

1964 (1)

Ashford, M. N. R.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
[CrossRef]

Baillargeon, J. N.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

Berden, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Bewley, W. W.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Camy-Peyret, C.

Canedy, C. L.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Capasso, F.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Catoire, V.

Chalumeau, G.

Chartier, M.

Chave, R. G.

Cho, A. Y.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Chu, S. N. G.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

Darvish, S. R.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Echternach, P. M.

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

Evans, A.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Faist, J.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Gmachl, C.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

Gokden, B.

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Herriott, D.

Herriott, D. R.

Hill, C. J.

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005).
[CrossRef]

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

Hinkley, E. D.

C. R. Webster, R. T. Menzies, and E. D. Hinkley, "Infrared laser absorption: theory and applications," Laser Remote Chemical Analysis,R.M.Measures, ed. (Wiley, 1988), Chap. 3.

Huret, N.

Hutchinson, A. L.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Kebabian, P. L.

Kendall, J.

Kim, C. S.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Kim, M.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Kogelnik, H.

Kompfner, R.

Krasnopolsky, V. A.

V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004).
[CrossRef]

Larrabee, D. C.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Li, T.

Maillard, J. P.

V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004).
[CrossRef]

Mansour, K.

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

May, R. D.

McManus, J. B.

Meijer, G.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Menzies, R. T.

C. R. Webster, R. T. Menzies, and E. D. Hinkley, "Infrared laser absorption: theory and applications," Laser Remote Chemical Analysis,R.M.Measures, ed. (Wiley, 1988), Chap. 3.

Meyer, J. R.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

Moreau, G.

Muller, R. E.

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

Newman, S. M.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
[CrossRef]

Nguyen, J.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

Nolde, J. A.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Orr-Ewing, A. J.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
[CrossRef]

Owen, T. C.

V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004).
[CrossRef]

Peeters, R.

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

Pirre, M.

Pomathiod, L.

Qiu, Y.

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

Ram-Mohan, L. R.

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

Razeghi, M.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Robert, C.

Schulte, H. J.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Slivken, S.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Soibel, A.

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

Tredicucci, A.

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

Trimble, C. A.

Vurgaftman, I.

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

Webster, C. R.

Wheeler, M. D.

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
[CrossRef]

Yang, B. H.

R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005).
[CrossRef]

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

Yang, R. Q.

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005).
[CrossRef]

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells," Superlattices Microstruct. 17, 77-83 (1995).
[CrossRef]

Yu, J. S.

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

Zahniser, M. S.

Appl. Opt. (8)

Appl. Phys. Lett. (6)

C. Gmachl, F. Capasso, J. Faist, A. L. Hutchinson, A. Tredicucci, D. L. Sivco, J. N. Baillargeon, S. N. G. Chu, and A. Y. Cho, "Continuous-wave and high power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ ≈ 8.5 μm," Appl. Phys. Lett. 72, 1430-1432 (1998).
[CrossRef]

A. Evans, J. Nguyen, S. Slivken, J. S. Yu, S. R. Darvish, and M. Razeghi, "Quantum-cascade lasers operating in continuous-wave mode above 90 °C at λ ∼ 5.25 μm," Appl. Phys. Lett. 88, 051105 (2006).
[CrossRef]

J. S. Yu, S. Slivken, S. R. Darvish, A. Evans, B. Gokden, and M. Razeghi, "High-power, room-temperature, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ∼ 4.8 μm," Appl. Phys. Lett. 87, 041104 (2005).
[CrossRef]

R. Q. Yang, C. J. Hill, B. H. Yang, R. E. Muller, and P. M. Echternach, "Continuous-wave operation of distributed feedback interband cascade lasers," Appl. Phys. Lett. 84, 3699-3701 (2004).
[CrossRef]

R. Q. Yang, C. J. Hill, and B. H. Yang, "High-temperature and low-threshold midinfrared interband cascade lasers," Appl. Phys. Lett. 87, 151109 (2005).
[CrossRef]

W. W. Bewley, J. A. Nolde, D. C. Larrabee, C. L. Canedy, C. S. Kim, M. Kim, I. Vurgaftman, and J. R. Meyer, "Interband cascade laser operating cw to 257 K at λ = 3.7 μm," Appl. Phys. Lett. 89, 161106 (2006).
[CrossRef]

Electron. Lett. (2)

K. Mansour, Y. Qiu, C. J. Hill, A. Soibel, and R. Q. Yang, "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures," Electron. Lett. 42, 31 (2006).
[CrossRef]

J. R. Meyer, I. Vurgaftman, R. Q. Yang, and L. R. Ram-Mohan, "Type-II and type-I interband cascade lasers," Electron. Lett. 32, 45-46 (1996).
[CrossRef]

Icarus (1)

V. A. Krasnopolsky, J. P. Maillard, and T. C. Owen, "Detection of methane in the martian atmosphere: evidence for life?"Icarus 172, 537-547 (2004).
[CrossRef]

Int. Rev. Phys. Chem. (1)

G. Berden, R. Peeters, and G. Meijer, "Cavity ring-down spectroscopy: experimental schemes and application," Int. Rev. Phys. Chem. 19, 565-607 (2000).
[CrossRef]

J. Chem. Soc. Faraday Trans. (1)

M. D. Wheeler, S. M. Newman, A. J. Orr-Ewing, and M. N. R. Ashford, "Cavity ring-down spectroscopy," J. Chem. Soc. Faraday Trans. 94, 337-351 (1998).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade lasers," Science 264, 553-555 (1994).
[CrossRef] [PubMed]

Superlattices Microstruct. (1)

R. Q. Yang, "Infrared laser based on intersubband transitions in quantum wells," Superlattices Microstruct. 17, 77-83 (1995).
[CrossRef]

Other (1)

C. R. Webster, R. T. Menzies, and E. D. Hinkley, "Infrared laser absorption: theory and applications," Laser Remote Chemical Analysis,R.M.Measures, ed. (Wiley, 1988), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

TLS of the SAM analytical suite on the MSL mission.

Fig. 2
Fig. 2

Coordinate system of the Herriott cell showing near and far mirrors.

Fig. 3
Fig. 3

Description of the angle θ as viewed looking down toward the positive z axis from the near mirror to the far mirror. The solid spots represent reflections on one mirror, whereas the circles represent reflections on the other mirror.

Fig. 4
Fig. 4

Graph of N versus d for several families of solutions of a Herriott cell. The graph was calculated using a radius of curvature of 0.5 m for the spherical mirrors. Degenerate solutions have been removed from the plot.

Fig. 5
Fig. 5

N versus θ for several families of solutions of a Herriott cell. The graph was calculated using a radius of curvature of 0.5 m for the spherical mirrors. Degenerate solutions have been removed from the plot.

Fig. 6
Fig. 6

Points of reflections on the far mirror for various solutions with N = 82 . The spots are numbered according to the order of their reflection. The size of the spots is a function of the intensity, where the larger spots represent earlier reflections. The calculation was performed with a 0.5 m radius of curvature for the mirrors.

Fig. 7
Fig. 7

Black and white photos of the far mirror of a Herriott cell showing several characteristic spot patterns for different solutions. The radius of curvature of the near and far mirrors was 0.5 m. The Herriott cell consisted of 82 passes with the solutions (a) { 82 , 21 , 2 , 2 } , (b) { 82 , 20 , + 2 , 2 } , (c) { 82 , 14 , 2 , 3 } , and (d) { 82 , 13 , + 4 , 3 } .

Fig. 8
Fig. 8

Simulated interference fringes for the { 82 , 13 , 4 , 3 } and { 82 , 14 , 2 , 3 } solutions of a Herriott cell with the 81st pass removed. Overlaid is a simulated A 1 ( 1 ) line of the R(3) multiplet of the ν 3 band of CH 4 . The CH 4 line was calculated using Hitran with a pressure of 7 mbar and a temperature of 280 K.

Fig. 9
Fig. 9

Points of reflections on the near and far mirrors of a four-channel and a six-channel Herriott cell as viewed toward the mirror surfaces. Each color represents a different laser channel. The circles on the near mirror represent the laser injection holes. The circles on the far mirror represent the beam output holes, where the 81st pass is removed from the cell. The spot size is a function of the beam intensity.

Fig. 10
Fig. 10

Color photograph of the far mirror of a six-channel Herriott cell. The holes in the far mirror are the output hole that removed the 81st pass from each channel. The channels for Lasers 1, 3, and 5 used a 532   nm diode lasers for the radiation source. The channels for Lasers 2, 4, and 6 used 632   nm HeNe lasers.

Fig. 11
Fig. 11

Color photograph of the front and back of the near and far mirrors of the four-laser channel Herriott cell prototype. The near mirror is shown on the left. The far mirror is shown on the right.

Tables (1)

Tables Icon

Table 1 TLS Laser Wavelengths, Target Gases, and Isotope Ratios

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

r = T r .
T ( d ) = [ 1 d 0 0 0 1 0 0 0 0 1 d 0 0 0 1 ] .
T ( R ) = [ 1 0 0 0 2 / R 1 0 0 0 0 1 0 0 0 2 / R 1 ] .
T = T ( R 1 ) T ( d ) T ( R 2 ) T ( d ) .
r n = T n r .
N θ = 2 M π .
N | θ | = 2 M π .
cos ( θ ) = 1 d R .
N = 2 p M + k .
d p , M = lim M ( 1 cos ( 2 M π 2 p M + k ) ) R .
p + k 2 M = p + k 2 M ,

Metrics