Abstract

We present a method to construct the best linear estimate of optically active material concentration from ocean radiance spectra measured through an arbitrary atmosphere layer by a hyperspectral sensor. The algorithm accounts for sensor noise. Optical models of seawater and maritime atmosphere were used to obtain the joint distribution of spectra and concentrations required for the algorithm. The accuracy of phytoplankton retrieval is shown to be substantially lower than that of sediment and dissolved matter. In all cases, the sensor noise noticeably reduces the retrieval accuracy. Additional errors due to atmospheric interference are analyzed, and possible ways to increase the accuracy of retrieval are suggested, such as changing sensor parameters and including a priori information about observation conditions.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Sathyendranath, L. Prieur, and A. Morel, "A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters," Int. J. Remote Sens. 10, 1373-1394 (1989).
    [CrossRef]
  2. S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, "Detection of phytoplankton pigments from ocean color: improved algorithms," Appl. Opt. 33, 1081-1089 (1994).
    [PubMed]
  3. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
    [CrossRef]
  4. Z. Lee and K. L. Carder, "Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data," Appl. Opt. 41, 2191-2201 (2002).
    [CrossRef] [PubMed]
  5. I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
    [CrossRef]
  6. V. P. Kozlov, Selected Works on Optimal Design Theory and Inverse Problems of Optical Remote Sensing (St. Petersburg U. Press, 2000) (in Russian).
  7. V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, "Optimum selection of spectral channels in the problem of remote sensing of phytoplankton concentration in ocean water," in Proceedings of the Pacific Ocean Remote Sensing Conference (PORSEC-92) (1992), pp. 1073-1075.
  8. I. M. Levin and I. V. Zolotukhin, "Optimal selection of spectral channels for remote sensing of optically active matters in the ocean: application of the experimental design theory," Proc. SPIE 2963, 228-233 (1996).
    [CrossRef]
  9. I. V. Zolotukhin and I. M. Levin, "Application of the theory of optimal experimental design to remote sensing of phytoplankton and other optically active substances in the ocean," Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 35, 616-624 (1999).
  10. R. W. Austin, "Inherent spectral radiance signatures of the ocean surface," in Ocean Color Analysis (Final Technical Report), S.Q.Duntley, ed., SIO Ref. 74-10 (Scripps Institution of Oceanography, 1974).
  11. U. A.-R. Mullamaa, Atlas of Optical Properties of the Rough Sea Surface (Estonian Academy of Sciences, 1964) (in Russian).
  12. I. M. Levin, "Marine reflectance accounted for molecular scattering," Oceanology (Engl. Transl.) 37, 175-177 (1997).
  13. V. Sobolev, Light Scattering in the Planetary Atmospheres (Nauka, 1972) (in Russian).
  14. W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
    [CrossRef]
  15. K. Shifrin and I. Minin, "To the nonhorizontal visibility theory," in Proceedings of GGO (Main Geophysical Observatory) (1957) (in Russian), Vol. 68, pp. 5-75.
  16. K. Shifrin, "Optical properties of the atmosphere over the ocean," in Light Scattering and Absorption in Natural and Artificial Turbid Media (Institute of Physics, 1991), pp. 277-288 (in Russian).
  17. H. R. Gordon and D. J. Castano, "Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects," Appl. Opt. 28, 1320-1326 (1989).
    [CrossRef] [PubMed]
  18. A. Ignatov, "Estimation of aerosol phase function in backscatter from simultaneous satellite and Sun-photometer measurements," J. Appl. Meteor. 36, 688-694 (1997).
    [CrossRef]
  19. L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
    [CrossRef]
  20. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  21. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
    [CrossRef]
  22. A. Morel and H. Loisel, "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution," Appl. Opt. 37, 4765-4776 (1998).
    [CrossRef]
  23. H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
    [CrossRef]
  24. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
    [CrossRef]
  25. R. W. Gould, R. A. Arnone, and P. M. Martinolich, "Spectral dependence of the scattering coefficient in case 1 and case 2 waters," Appl. Opt. 38, 2377-2383 (1999).
    [CrossRef]
  26. A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
    [CrossRef]
  27. S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
    [CrossRef]
  28. A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
    [CrossRef]
  29. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  30. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
    [CrossRef]
  31. A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
    [CrossRef] [PubMed]
  32. O. V. Kopelevich, "The current low-parametric models of seawater optical properties," in Proceedings of the International Conference "Current Problems in Optics of Natural Waters" (ONW2001), I.M.Levin and G.D.Gilbert, eds. (D. S. Rozhdestvensky Optical Society, 2001), pp. 18-23.
  33. A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998).
    [CrossRef]
  34. Z. Lee, ed., Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications (International Ocean Color Cooordinating Group Rep. 5, 2006).
    [PubMed]

2006

Z. Lee, ed., Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications (International Ocean Color Cooordinating Group Rep. 5, 2006).
[PubMed]

2005

I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
[CrossRef]

2002

2001

O. V. Kopelevich, "The current low-parametric models of seawater optical properties," in Proceedings of the International Conference "Current Problems in Optics of Natural Waters" (ONW2001), I.M.Levin and G.D.Gilbert, eds. (D. S. Rozhdestvensky Optical Society, 2001), pp. 18-23.

A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

2000

V. P. Kozlov, Selected Works on Optimal Design Theory and Inverse Problems of Optical Remote Sensing (St. Petersburg U. Press, 2000) (in Russian).

1999

1998

A. Morel and H. Loisel, "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution," Appl. Opt. 37, 4765-4776 (1998).
[CrossRef]

H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

1997

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

I. M. Levin, "Marine reflectance accounted for molecular scattering," Oceanology (Engl. Transl.) 37, 175-177 (1997).

A. Ignatov, "Estimation of aerosol phase function in backscatter from simultaneous satellite and Sun-photometer measurements," J. Appl. Meteor. 36, 688-694 (1997).
[CrossRef]

1996

I. M. Levin and I. V. Zolotukhin, "Optimal selection of spectral channels for remote sensing of optically active matters in the ocean: application of the experimental design theory," Proc. SPIE 2963, 228-233 (1996).
[CrossRef]

1995

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

1994

1992

V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, "Optimum selection of spectral channels in the problem of remote sensing of phytoplankton concentration in ocean water," in Proceedings of the Pacific Ocean Remote Sensing Conference (PORSEC-92) (1992), pp. 1073-1075.

1991

K. Shifrin, "Optical properties of the atmosphere over the ocean," in Light Scattering and Absorption in Natural and Artificial Turbid Media (Institute of Physics, 1991), pp. 277-288 (in Russian).

1990

W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
[CrossRef]

1989

H. R. Gordon and D. J. Castano, "Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects," Appl. Opt. 28, 1320-1326 (1989).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, and A. Morel, "A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters," Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

1988

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

1983

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

1981

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

1974

R. W. Austin, "Inherent spectral radiance signatures of the ocean surface," in Ocean Color Analysis (Final Technical Report), S.Q.Duntley, ed., SIO Ref. 74-10 (Scripps Institution of Oceanography, 1974).

1972

V. Sobolev, Light Scattering in the Planetary Atmospheres (Nauka, 1972) (in Russian).

1964

U. A.-R. Mullamaa, Atlas of Optical Properties of the Rough Sea Surface (Estonian Academy of Sciences, 1964) (in Russian).

1957

K. Shifrin and I. Minin, "To the nonhorizontal visibility theory," in Proceedings of GGO (Main Geophysical Observatory) (1957) (in Russian), Vol. 68, pp. 5-75.

Antoine, D.

Arnone, R. A.

Austin, R. W.

R. W. Austin, "Inherent spectral radiance signatures of the ocean surface," in Ocean Color Analysis (Final Technical Report), S.Q.Duntley, ed., SIO Ref. 74-10 (Scripps Institution of Oceanography, 1974).

Babin, M.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

Barnard, A. H.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998).
[CrossRef]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

Carder, K. L.

Castano, D. J.

Clark, D. K.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

Claustre, H.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

Cota, G.

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

Fry, E. S.

Garver, S. A.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Gentili, B.

Gilbert, G.

I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
[CrossRef]

Gordon, H. R.

H. R. Gordon and D. J. Castano, "Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects," Appl. Opt. 28, 1320-1326 (1989).
[CrossRef] [PubMed]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Gould, R. W.

Gregg, W. W.

W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
[CrossRef]

Hoge, F. E.

Ignatov, A.

A. Ignatov, "Estimation of aerosol phase function in backscatter from simultaneous satellite and Sun-photometer measurements," J. Appl. Meteor. 36, 688-694 (1997).
[CrossRef]

Kahru, M.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Kopelevich, O. V.

O. V. Kopelevich, "The current low-parametric models of seawater optical properties," in Proceedings of the International Conference "Current Problems in Optics of Natural Waters" (ONW2001), I.M.Levin and G.D.Gilbert, eds. (D. S. Rozhdestvensky Optical Society, 2001), pp. 18-23.

Kozlov, V. P.

V. P. Kozlov, Selected Works on Optimal Design Theory and Inverse Problems of Optical Remote Sensing (St. Petersburg U. Press, 2000) (in Russian).

V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, "Optimum selection of spectral channels in the problem of remote sensing of phytoplankton concentration in ocean water," in Proceedings of the Pacific Ocean Remote Sensing Conference (PORSEC-92) (1992), pp. 1073-1075.

Lee, Z.

Levin, I.

I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
[CrossRef]

Levin, I. M.

I. V. Zolotukhin and I. M. Levin, "Application of the theory of optimal experimental design to remote sensing of phytoplankton and other optically active substances in the ocean," Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 35, 616-624 (1999).

I. M. Levin, "Marine reflectance accounted for molecular scattering," Oceanology (Engl. Transl.) 37, 175-177 (1997).

I. M. Levin and I. V. Zolotukhin, "Optimal selection of spectral channels for remote sensing of optically active matters in the ocean: application of the experimental design theory," Proc. SPIE 2963, 228-233 (1996).
[CrossRef]

V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, "Optimum selection of spectral channels in the problem of remote sensing of phytoplankton concentration in ocean water," in Proceedings of the Pacific Ocean Remote Sensing Conference (PORSEC-92) (1992), pp. 1073-1075.

Levina, E.

I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
[CrossRef]

Loisel, H.

A. Morel and H. Loisel, "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution," Appl. Opt. 37, 4765-4776 (1998).
[CrossRef]

H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

Maass, H.

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

Maritorena, S.

A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Martinolich, P. M.

McClain, C.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Minin, I.

K. Shifrin and I. Minin, "To the nonhorizontal visibility theory," in Proceedings of GGO (Main Geophysical Observatory) (1957) (in Russian), Vol. 68, pp. 5-75.

Mitchell, B. G.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Mobley, C. D.

Morel, A.

A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
[CrossRef] [PubMed]

A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

A. Morel and H. Loisel, "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution," Appl. Opt. 37, 4765-4776 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

S. Sathyendranath, L. Prieur, and A. Morel, "A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters," Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Mullamaa, U. A.-R.

U. A.-R. Mullamaa, Atlas of Optical Properties of the Rough Sea Surface (Estonian Academy of Sciences, 1964) (in Russian).

O'Reilly, J. E.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Patch, J. S.

Pegau, W. S.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998).
[CrossRef]

Platt, T.

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, "Detection of phytoplankton pigments from ocean color: improved algorithms," Appl. Opt. 33, 1081-1089 (1994).
[PubMed]

Pope, R. M.

Prieur, L.

S. Sathyendranath, L. Prieur, and A. Morel, "A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters," Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

Sathyendranath, S.

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, "Detection of phytoplankton pigments from ocean color: improved algorithms," Appl. Opt. 33, 1081-1089 (1994).
[PubMed]

S. Sathyendranath, L. Prieur, and A. Morel, "A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters," Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

Shifrin, K.

K. Shifrin, "Optical properties of the atmosphere over the ocean," in Light Scattering and Absorption in Natural and Artificial Turbid Media (Institute of Physics, 1991), pp. 277-288 (in Russian).

K. Shifrin and I. Minin, "To the nonhorizontal visibility theory," in Proceedings of GGO (Main Geophysical Observatory) (1957) (in Russian), Vol. 68, pp. 5-75.

Siegel, D. A.

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

Sobolev, V.

V. Sobolev, Light Scattering in the Planetary Atmospheres (Nauka, 1972) (in Russian).

Steward, R. G.

Stewart, S.

I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
[CrossRef]

Stuart, V.

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

Swift, R. N.

Zaneveld, J. R. V.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998).
[CrossRef]

Zolotukhin, I. V.

I. V. Zolotukhin and I. M. Levin, "Application of the theory of optimal experimental design to remote sensing of phytoplankton and other optically active substances in the ocean," Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 35, 616-624 (1999).

I. M. Levin and I. V. Zolotukhin, "Optimal selection of spectral channels for remote sensing of optically active matters in the ocean: application of the experimental design theory," Proc. SPIE 2963, 228-233 (1996).
[CrossRef]

V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, "Optimum selection of spectral channels in the problem of remote sensing of phytoplankton concentration in ocean water," in Proceedings of the Pacific Ocean Remote Sensing Conference (PORSEC-92) (1992), pp. 1073-1075.

Appl. Opt.

S. Sathyendranath, F. E. Hoge, T. Platt, and R. N. Swift, "Detection of phytoplankton pigments from ocean color: improved algorithms," Appl. Opt. 33, 1081-1089 (1994).
[PubMed]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. 2. Deriving bottom depths and water properties by optimization," Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

Z. Lee and K. L. Carder, "Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data," Appl. Opt. 41, 2191-2201 (2002).
[CrossRef] [PubMed]

H. R. Gordon and D. J. Castano, "Aerosol analysis with the Coastal Zone Color Scanner: a simple method for including multiple scattering effects," Appl. Opt. 28, 1320-1326 (1989).
[CrossRef] [PubMed]

A. Morel and H. Loisel, "Apparent optical properties of oceanic water: dependence on the molecular scattering contribution," Appl. Opt. 37, 4765-4776 (1998).
[CrossRef]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

R. W. Gould, R. A. Arnone, and P. M. Martinolich, "Spectral dependence of the scattering coefficient in case 1 and case 2 waters," Appl. Opt. 38, 2377-2383 (1999).
[CrossRef]

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
[CrossRef] [PubMed]

Int. J. Remote Sens.

S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, "Remote sensing of phytoplankton pigments: a comparison of empirical and theoretical approaches," Int. J. Remote Sens. 22, 249-273 (2001).
[CrossRef]

S. Sathyendranath, L. Prieur, and A. Morel, "A three-component model of ocean color and its application to remote sensing of phytoplankton pigments in coastal waters," Int. J. Remote Sens. 10, 1373-1394 (1989).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Ocean. Phys.

I. V. Zolotukhin and I. M. Levin, "Application of the theory of optimal experimental design to remote sensing of phytoplankton and other optically active substances in the ocean," Izv. Acad. Sci. USSR Atmos. Ocean. Phys. 35, 616-624 (1999).

J. Appl. Meteor.

A. Ignatov, "Estimation of aerosol phase function in backscatter from simultaneous satellite and Sun-photometer measurements," J. Appl. Meteor. 36, 688-694 (1997).
[CrossRef]

J. Geophy. Res.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophy. Res. 93, 10909-10924 (1988).
[CrossRef]

J. Geophys. Res.

A. H. Barnard, W. S. Pegau, and J. R. V. Zaneveld, "Global relationships of the inherent optical properties of the oceans," J. Geophys. Res. 103, 24955-24968 (1998).
[CrossRef]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, "Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization," J. Geophys. Res. 100, 13321-13332 (1995).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24953 (1998).
[CrossRef]

A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

Limnol. Oceanogr.

H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

W. W. Gregg and K. L. Carder, "A simple spectral solar irradiance model for cloudless maritime atmospheres," Limnol. Oceanogr. 35, 1657-1675 (1990).
[CrossRef]

Oceanology

I. M. Levin, "Marine reflectance accounted for molecular scattering," Oceanology (Engl. Transl.) 37, 175-177 (1997).

Proc. SPIE

I. M. Levin and I. V. Zolotukhin, "Optimal selection of spectral channels for remote sensing of optically active matters in the ocean: application of the experimental design theory," Proc. SPIE 2963, 228-233 (1996).
[CrossRef]

Remote Sens. Environ.

I. Levin, E. Levina, G. Gilbert, and S. Stewart, "Role of sensor noise in hyperspectral remote sensing of natural waters: application to retrieval of phytoplankton pigment," Remote Sens. Environ. 95, 264-271 (2005).
[CrossRef]

Other

V. P. Kozlov, Selected Works on Optimal Design Theory and Inverse Problems of Optical Remote Sensing (St. Petersburg U. Press, 2000) (in Russian).

V. P. Kozlov, I. M. Levin, and I. V. Zolotukhin, "Optimum selection of spectral channels in the problem of remote sensing of phytoplankton concentration in ocean water," in Proceedings of the Pacific Ocean Remote Sensing Conference (PORSEC-92) (1992), pp. 1073-1075.

R. W. Austin, "Inherent spectral radiance signatures of the ocean surface," in Ocean Color Analysis (Final Technical Report), S.Q.Duntley, ed., SIO Ref. 74-10 (Scripps Institution of Oceanography, 1974).

U. A.-R. Mullamaa, Atlas of Optical Properties of the Rough Sea Surface (Estonian Academy of Sciences, 1964) (in Russian).

V. Sobolev, Light Scattering in the Planetary Atmospheres (Nauka, 1972) (in Russian).

K. Shifrin and I. Minin, "To the nonhorizontal visibility theory," in Proceedings of GGO (Main Geophysical Observatory) (1957) (in Russian), Vol. 68, pp. 5-75.

K. Shifrin, "Optical properties of the atmosphere over the ocean," in Light Scattering and Absorption in Natural and Artificial Turbid Media (Institute of Physics, 1991), pp. 277-288 (in Russian).

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Z. Lee, ed., Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications (International Ocean Color Cooordinating Group Rep. 5, 2006).
[PubMed]

O. V. Kopelevich, "The current low-parametric models of seawater optical properties," in Proceedings of the International Conference "Current Problems in Optics of Natural Waters" (ONW2001), I.M.Levin and G.D.Gilbert, eds. (D. S. Rozhdestvensky Optical Society, 2001), pp. 18-23.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence between modeled (true) and retrieved (estimated) values of concentrations for the case of shipboard observations.

Fig. 2
Fig. 2

Residual variance h of estimating concentrations C, X, and Y as a function of sensor resource for the case of shipboard observations. Dashed lines show the variance without accounting for sensor noise ( h 0 ) . Resource of LASH sensor is taken to be 1.

Fig. 3
Fig. 3

Average relative error of estimating concentrations C, X, and Y as a function of sensor height over the water surface for the LASH sensor.

Tables (6)

Tables Icon

Table 1 Total Aerosol Optical Thickness over the Ocean: Average (Top Entry) and Standard Deviation (Bottom Entry) [16]

Tables Icon

Table 2 Classification of Ocean Regions by Atmosphere Optical Parameters [16]

Tables Icon

Table 3 Case of Shipboard Observation: Residual Variances of Estimating Phytoplankton (log C ), Sediment (log X ), and Yellow Substance (log Y ) from Radiance Measurements with ( h ) and without ( h   0 ) Accounting for Sensor Noise

Tables Icon

Table 4 Residual Variance ( h ) of Estimating Phytoplankton (log C ), Sediment (log X ), and Yellow Substance (log Y ) and Corresponding Relative Errors (δ C , δ X , and δ Y ) for Shipboard Observations as a Function of the Sensor Resource S (Resource of the LASH Sensor is Set to 1)

Tables Icon

Table 5 Residual Variance ( h ) of Estimating Phytoplankton (log C ), Sediment (log X ) and Yellow Substance (log Y ) and Corresponding Relative Errors (δ C , δ X , and δ Y ) for Airborne Observations from Height H for the LASH Sensor

Tables Icon

Table 6 Residual Variance ( h ) of Estimating Phytoplankton (log C ), Sediment (log X ), and Yellow Substance (log Y ) and Corresponding Relative Errors (δ C , δ X , and δ Y ) for Different Ranges of Concentration of C ( I , I 1, and I 2), Observations from Height H = 20 km

Equations (57)

Equations on this page are rendered with MathJax. Learn more.

θ = α 0 + y T α = α 0 + i = 1 r y i α i .
E y i = u i + ν i ,
α 0 = θ i = 1 r α i ( f i + ν i ) ,
α = [ K + diag ( f + v ) ] 1 q ,
h = σ 2 q T [ K + diag ( f + v ) ] 1 q .
h 0 = σ 2 q T K 1 q ,
u i = t L t ( λ i ) A τ i ω η i g i Δ λ i e 1 ( λ i ) ,
L t ( λ ) = [ L ( λ ) + L s ( λ ) ] T A ( λ ) + L A ( λ ) = π 1 E ( λ ) [ 0.533 ρ ( λ ) + ρ s ( λ ) ] T A ( λ ) + L A ( λ ) .
ρ = β ρ dir + ( 1 β ) ρ dif , ρ s = β ρ s dir + ( 1 β ) ρ s dir ,
ρ dir = 1 η w + 0.8 ( 1 + 0.8 μ 0 2 ) η w 2 ( 1 + μ 0 ) b b a + b b ,
ρ dif = ( 0 .27 + 0 .07 η w ) b b / ( a + b b ) ,
L A ( H ) = π 1 E d ( H ) M 1 { ρ A 1 0 [ x A ( γ ) 3 μ 0 2 + x A 1 μ μ 0 ] + [ 0.25 ( 3 x A 1 ) T A ( H , μ 0 ) τ H exp ( τ H / μ ) ] + [ 0.5 ( 1 + 1.5 μ 0 T A ( H , μ 0 ) ) 0.75 μ T A ( H , μ 0 ) ] [ 1 exp ( τ H / μ ) ] } ,
ρ A 1 0 = 1 4 ( μ 0 + μ ) { 1 exp [ τ H ( μ 0 1 + μ 1 ) ] }
0.5 0 π x A ( γ ) sin γ d γ = 1.
cos γ = cos θ 0 cos ϑ + sin θ 0 sin ϑ cos ϕ ,
T A ( H ) = t A ( τ H , μ ) × M 2 ( τ a , μ ) ,
T A ( H ) = t A ( τ H , μ 0 ) × M 2 ( τ a , μ 0 ) ,
t A ( τ H , μ ) = 1 + 1.5 μ + ( 1 1.5 μ ) exp ( τ H / μ ) 2 + 0.5 ( 3 x A 1 ) τ H .
M 1 ( τ a , μ 0 ) = 1 + 0.37 ( 1 μ 0 3 ) τ a ,
M 2 ( τ a , μ ) = 1 + 0.715 τ a ( 1 μ 1 / 2 ) 1 + 0.12 τ a .
E = E ° μ 0 T A ( τ A , μ 0 ) ,
E d ( H ) = E ° μ 0 T A ( τ A τ H , μ 0 ) ,
E dir = E ° μ 0 exp [ τ A / μ 0 ] .
τ H = τ a + τ r .
τ a = τ 0 a [ 1 exp ( H / H a ) ] ,
τ r = τ 0 r [ 1 exp ( H / H r ) ] ,
τ A = τ 0 a + τ 0 r .
τ 0 r = [ 115.64 λ 4 1.335 λ 2 ] 1 ,
τ 0 a ( λ ) = τ 0 a ( 550 ) ( 550 / λ ) α ,
τ 0 a ( 550 ) = 3.9 / V v 0.012 ,
x A ( γ ) = x a ( γ ) τ a / τ H + x r ( γ ) τ r / τ H ,
x A 1 = x 1 a τ a / τ H ,
x r = 0.75 ( 1.017 + 0.948 cos 2 γ ) .
{       x a ( γ ) = α * f ( γ , g 1 ) + ( 1 α * ) f ( γ , g 2 ) f ( γ , g i ) = 1 g i 2 ( 1 + g i 2 2 g i cos γ ) 3 / 2 }
a ( λ ) = a w ( λ ) + a c ( 440 ) a c ( λ ) + a x ( 440 ) a x ( λ ) + a y ( 440 ) a y ( λ ) ,
b b ( λ ) = 0.5 b w ( λ ) + b c ( λ ) b ˜ b c + b x ( λ ) b ˜ b x ,
a x ( 440 ) = 0.42 X     b x ( λ ) = X ( 550 / λ )
b c ( λ ) = b c ( 550 ) a c ( 550 ) / a c ( λ ) ,     b c ( 550 ) = b 0 C 0.62 .
b ˜ b c = 0.01 ( 0.78 0.42 log 10 C ) [ 27 ] ,
a c ( λ ) = A ( λ ) C 1 B ( λ ) ,
C = 0.1 10 mg × m 3 , X = 0.1 1 m 1 , Y = 0.1 1 m 1 .
α = 0.4 + 3.85 [ τ 0 a ( 550 ) 0.07 ] ,
h 1 / 2 Δ ( log θ ) ( log θ ) Δ θ δ θ / ln 10 ,
δ θ h 1 / 2 ln 10.
b ˜ b c = 0.002 + 0.01 ( 0.5 0.25 log 10 C ) ,
a x ( λ ) 0 ,
b c ( 550 ) = 0.416 C 0.766 if C < 1 ,
a y ( λ ) = a y ( 440 ) exp [ 0.014 ( λ 4 4 0 ) ] ,
a y ( λ ) = a y ( 440 ) exp [ 0.017 ( λ 440 ) ] ,
λ < 500 nm ,
a y ( λ ) = a y ( 440 ) exp [ 1.02 0.011 ( λ 5 0 0 ) ] ,
λ 500 nm ,
b c ( λ ) = b c ( 550 ) ( λ / 550 ) ν
ν = 0.5 ( log 10 C 0.3 ) ,   C < 2 mg 3 ,
ν = 0 ,   C > 2 mg 3
a y ( 440 ) = 0.2 [ a w ( 440 ) + a c ( 440 ) ] ,
S = t A ω = 0.25 π 2 d 2 γ 0 2 t ,

Metrics