Abstract

This work demonstrates a new technique for real-time optical sensor interrogation by exploiting a novel Vernier effect between the multiple (comb) wavelength responses of a multiplexed fiber Bragg grating array and the fixed discrete wavelengths of an all-solid-state tunable laser. Sets of output photodetector voltages serve as high-resolution optical “signatures” to determine uniquely the strain in the single fiber section. The sensor demonstrated here is compact, lightweight, and is specifically intended for remote operability in harsh (vibrational) environments. In this proof of concept, strain values over a range of nearly 500με can be easily resolved to better than 5.9με, which is the incremental limit of the mechanical test fixture used to induce strain in the experiment.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
    [CrossRef]
  2. Y. J. Rao, "Recent progress in applications of in-fiber Bragg grating sensors," Opt. Lasers Eng. 31, 297-324 (1999).
    [CrossRef]
  3. I. C. Song, S. K. Lee, S. H. Jeong, and B. H. Lee, "Absolute strain measurements made with fiber Bragg grating sensors," Appl. Opt. 43, 1337-1341 (2004).
    [CrossRef] [PubMed]
  4. G. B. Tait and R. S. Rogowski, "Fiber Bragg grating sensors for real-time health monitoring of aerospace vehicles," in Proceedings of 2005 Quantum Electronics and Laser Science Conference (OELS) (IEEE, 2005), pp. 924-926.
    [CrossRef]
  5. B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elasto-optic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
    [CrossRef]
  6. J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
    [CrossRef]
  7. T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
    [CrossRef]
  8. P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
    [CrossRef]
  9. J. Buus and E. J. Murphy, "Tunable lasers in optical networks," IEEE J. Lightwave Technol. 24, 5-11 (2006).
    [CrossRef]
  10. L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
    [CrossRef]
  11. A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  12. P. V. Lambeck, J. van Lith, and H. Hoekstra, "Three novel integrated optical sensing structures for the chemical domain," Sens. Actuators B 113, 718-729 (2006).
    [CrossRef]
  13. X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
    [CrossRef]
  14. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  15. C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
    [CrossRef]
  16. C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
    [CrossRef]
  17. T. Erdogan, "Fiber grating spectra," IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
    [CrossRef]
  18. O/E Land Inc., Saint-Laurent, Quebec, Canada (2006).
  19. New Focus Inc., San Jose, California (2006).
  20. P. C. D. Hobbs, "Ultrasensitive laser measurements without tears," Appl. Opt. 36, 903-920 (1997).
    [CrossRef] [PubMed]
  21. T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
    [CrossRef]
  22. E. W. Weisstein, "L2-Norm," from Wolfram MathWorld, http://mathworld.wolfram.com/L2-Norm.html.

2007 (1)

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

2006 (5)

P. V. Lambeck, J. van Lith, and H. Hoekstra, "Three novel integrated optical sensing structures for the chemical domain," Sens. Actuators B 113, 718-729 (2006).
[CrossRef]

O/E Land Inc., Saint-Laurent, Quebec, Canada (2006).

New Focus Inc., San Jose, California (2006).

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

J. Buus and E. J. Murphy, "Tunable lasers in optical networks," IEEE J. Lightwave Technol. 24, 5-11 (2006).
[CrossRef]

2005 (2)

G. B. Tait and R. S. Rogowski, "Fiber Bragg grating sensors for real-time health monitoring of aerospace vehicles," in Proceedings of 2005 Quantum Electronics and Laser Science Conference (OELS) (IEEE, 2005), pp. 924-926.
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

2004 (3)

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

I. C. Song, S. K. Lee, S. H. Jeong, and B. H. Lee, "Absolute strain measurements made with fiber Bragg grating sensors," Appl. Opt. 43, 1337-1341 (2004).
[CrossRef] [PubMed]

2002 (1)

J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
[CrossRef]

2000 (1)

C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
[CrossRef]

1999 (5)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elasto-optic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Y. J. Rao, "Recent progress in applications of in-fiber Bragg grating sensors," Opt. Lasers Eng. 31, 297-324 (1999).
[CrossRef]

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

1997 (3)

P. C. D. Hobbs, "Ultrasensitive laser measurements without tears," Appl. Opt. 36, 903-920 (1997).
[CrossRef] [PubMed]

T. Erdogan, "Fiber grating spectra," IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Akulova, Y.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Barton, J. S.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Blondel, M.

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

Boland, P.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Brown, T.

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

Buus, J.

J. Buus and E. J. Murphy, "Tunable lasers in optical networks," IEEE J. Lightwave Technol. 24, 5-11 (2006).
[CrossRef]

Cano, R.

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

Caucheteur, C.

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

Chah, K.

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

Chan, C.

C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
[CrossRef]

Chen, K.

J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
[CrossRef]

Childers, B.

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

Chu, P.

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Coldren, C. W.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Coldren, L. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Cong, J.

J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Demokan, M.

C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
[CrossRef]

Erdogan, T.

T. Erdogan, "Fiber grating spectra," IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

Fish, G. A.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Gong, J.

C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
[CrossRef]

Grattan, K. T. V.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

Graver, T.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Hobbs, P. C. D.

Hoekstra, H.

P. V. Lambeck, J. van Lith, and H. Hoekstra, "Three novel integrated optical sensing structures for the chemical domain," Sens. Actuators B 113, 718-729 (2006).
[CrossRef]

Jensen, B.

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

Jeong, S. H.

Jin, W.

C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
[CrossRef]

Johansson, L.

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Kashyap, R.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elasto-optic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lade, R.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

Lambeck, P. V.

P. V. Lambeck, J. van Lith, and H. Hoekstra, "Three novel integrated optical sensing structures for the chemical domain," Sens. Actuators B 113, 718-729 (2006).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Lee, B. H.

Lee, S. K.

Lhomme, F.

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

Mayteevarunyoo, T.

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Megret, P.

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

Mendez, A.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Murphy, E. J.

J. Buus and E. J. Murphy, "Tunable lasers in optical networks," IEEE J. Lightwave Technol. 24, 5-11 (2006).
[CrossRef]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

Parry, D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Pestov, D.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Powell, B. D.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, "Recent progress in applications of in-fiber Bragg grating sensors," Opt. Lasers Eng. 31, 297-324 (1999).
[CrossRef]

Rogowski, R.

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

Rogowski, R. S.

G. B. Tait and R. S. Rogowski, "Fiber Bragg grating sensors for real-time health monitoring of aerospace vehicles," in Proceedings of 2005 Quantum Electronics and Laser Science Conference (OELS) (IEEE, 2005), pp. 924-926.
[CrossRef]

Sang, X.

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Sethuraman, G.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Song, I. C.

Sun, T.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

Sutapun, B.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elasto-optic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Tabib-Azar, M.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elasto-optic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

Tait, G. B.

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

G. B. Tait and R. S. Rogowski, "Fiber Bragg grating sensors for real-time health monitoring of aerospace vehicles," in Proceedings of 2005 Quantum Electronics and Laser Science Conference (OELS) (IEEE, 2005), pp. 924-926.
[CrossRef]

van Lith, J.

P. V. Lambeck, J. van Lith, and H. Hoekstra, "Three novel integrated optical sensing structures for the chemical domain," Sens. Actuators B 113, 718-729 (2006).
[CrossRef]

Wang, K.

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Weisstein, E. W.

E. W. Weisstein, "L2-Norm," from Wolfram MathWorld, http://mathworld.wolfram.com/L2-Norm.html.

Wood, K.

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

Xu, J.

J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
[CrossRef]

Yeo, T. L.

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

Yu, C.

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Zhang, Q.

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Zhang, X.

J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
[CrossRef]

Appl. Opt. (2)

IEEE J. Lightwave Technol. (4)

J. Buus and E. J. Murphy, "Tunable lasers in optical networks," IEEE J. Lightwave Technol. 24, 5-11 (2006).
[CrossRef]

L. A. Coldren, G. A. Fish, Y. Akulova, J. S. Barton, L. Johansson, and C. W. Coldren, "Tunable semiconductor lasers: a tutorial," IEEE J. Lightwave Technol. 22, 193-202 (2004).
[CrossRef]

T. Erdogan, "Fiber grating spectra," IEEE J. Lightwave Technol. 15, 1277-1294 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, "Fiber grating sensors," IEEE J. Lightwave Technol. 15, 1442-1463 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Caucheteur, K. Chah, F. Lhomme, M. Blondel, and P. Megret, "Autocorrelation demodulation technique for fiber Bragg grating sensor," IEEE Photon. Technol. Lett. 16, 2320-2322 (2004).
[CrossRef]

Opt. Commun. (1)

C. Chan, J. Gong, W. Jin, and M. Demokan, "Investigation of unwanted interferometric signals in a fiber Bragg grating sensor using a tunable laser and a first derivative interrogation technique," Opt. Commun. 173, 203-210 (2000).
[CrossRef]

Opt. Lasers Eng. (1)

Y. J. Rao, "Recent progress in applications of in-fiber Bragg grating sensors," Opt. Lasers Eng. 31, 297-324 (1999).
[CrossRef]

Proc. SPIE (2)

T. Brown, K. Wood, B. Childers, R. Cano, B. Jensen, and R. Rogowski, "Fiber optic sensors for health monitoring of morphing aircraft," Proc. SPIE 3674, 60-71 (1999).
[CrossRef]

P. Boland, G. Sethuraman, A. Mendez, T. Graver, D. Pestov, and G. B. Tait, "Fiber Bragg grating multi-chemical sensor," Proc. SPIE 6371, 637109 (2006).
[CrossRef]

Sens. Actuators B (5)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, "Pd-coated elasto-optic fiber optic Bragg grating sensors for multiplexed hydrogen sensing," Sens. Actuators B 60, 27-34 (1999).
[CrossRef]

J. Cong, X. Zhang, K. Chen, and J. Xu, "Fiber optic Bragg grating sensor based on hydrogels for measuring salinity," Sens. Actuators B 87, 487-490 (2002).
[CrossRef]

T. L. Yeo, T. Sun, K. T. V. Grattan, D. Parry, R. Lade, and B. D. Powell, "Characterization of a polymer-coated fiber Bragg grating sensor for relative humidity sensing," Sens. Actuators B 110, 148-155 (2005).
[CrossRef]

P. V. Lambeck, J. van Lith, and H. Hoekstra, "Three novel integrated optical sensing structures for the chemical domain," Sens. Actuators B 113, 718-729 (2006).
[CrossRef]

X. Sang, C. Yu, T. Mayteevarunyoo, K. Wang, Q. Zhang, and P. Chu, "Temperature-insensitive chemical sensor based on a fiber Bragg grating," Sens. Actuators B 120, 754-757 (2007).
[CrossRef]

Other (6)

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

A. Othonos and K. Kalli, Fiber Bragg Gratings Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

G. B. Tait and R. S. Rogowski, "Fiber Bragg grating sensors for real-time health monitoring of aerospace vehicles," in Proceedings of 2005 Quantum Electronics and Laser Science Conference (OELS) (IEEE, 2005), pp. 924-926.
[CrossRef]

E. W. Weisstein, "L2-Norm," from Wolfram MathWorld, http://mathworld.wolfram.com/L2-Norm.html.

O/E Land Inc., Saint-Laurent, Quebec, Canada (2006).

New Focus Inc., San Jose, California (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Measured transmission comb spectrum of grating array device under no strain.

Fig. 2
Fig. 2

(Color online) Experimental block diagram of fiber-optic sensor.

Fig. 3
Fig. 3

Reflectance response of the grating array device at laser wavelength channels (a) 1–4 and (b) 5–8 over the range of strain settings.

Fig. 4
Fig. 4

Three-dimensional visualization of the unique photodetector output voltage vectors.

Fig. 5
Fig. 5

Histogram of L-2 norm distances between measured points in the eight-dimensional voltage space.

Tables (2)

Tables Icon

Table 1 ITU Telecom Grid Wavelengths Used for Tunable Laser

Tables Icon

Table 2 Example of Signature Vector Points at Consecutive Strain Settings

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

λ B = 2 n eff Λ B .
Δ λ = λ B 2 / ( 2 n eff L S ) ,
V P D = A log [ P ref / P sig 1 ] ,
Δ λ / λ = 0.76 ε ,
D min = min i , j = 0 , 1 , … , 80 i j V i V j 2 ,
V i V j 2 ( V i 1 V j 1 ) 2 + ( V i 2 V j 2 ) 2 + + ( V i 8 V j 8 ) 2 .

Metrics