Abstract

The attenuation coefficient of a pulsed laser beam in water is investigated experimentally. It is found that the attenuation coefficient is dependent on the pulse energy and the linewidth of the laser, rather than a constant. The attenuation coefficient for a narrow linewidth laser can exceed that of a broad linewidth laser due to stimulated Brillouin scattering when the laser intensity is larger than a certain value. A theoretical analysis is provided.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. N. G. Jerlov, Marine Optics, Elsevier Oceanography Series 14 (Elsevier Scientific, 1976), Chap. 3.3.
  2. M. R. Querry, P. G. Cary, and R. C. Waring, "Split-pulse laser method for measuring attenuation coefficients of transparent liquids: application to deionized filtered water in the visible region," Appl. Opt. 17, 3587-3592 (1978).
    [CrossRef] [PubMed]
  3. F. M.Sogandandares and E. S.Fry, "Absorption spectrum (360-640 nm) of pure water. I. Photothermal measurements," Appl. Opt. 36, 8699-8709 (1997).
    [CrossRef]
  4. R. M.Pope and E. S.Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  5. J. G. Hirschberg, J. D. Byrne, A. W. Wouters, and G. C. Boyton, "Speed of sound and temperature in the ocean by Brillouin scattering," Appl. Opt. 23, 2624-2628 (1984).
    [CrossRef] [PubMed]
  6. G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattwar, and E. S. Fry, "Aircraft laser sensing of sound velocity in water: Brillouin scattering," Remote Sens. Eviron. 36, 165-178 (1991).
    [CrossRef]
  7. Y. Emery and E. S. Fry, "Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering," Proc. SPIE 2963, 210-215 (1997).
    [CrossRef]
  8. R. Dai, W. Gong, J. Xu, X. Ren, and D. Liu, "The edge technique as used in Brillouin lidar for remote sensing of the ocean," Appl. Phys. B 79, 245-248 (2004).
    [CrossRef]
  9. Jinwei Shi, Guixin Li, Wenping Gong, Jianhui Bai, Yi Huang, Yinan Liu, Shujing Li, and Dahe Liu, "A lidar system based on stimulated Brillouin scattering," Appl. Phys. B 86, 177-179 (2007).
    [CrossRef]
  10. S. A. Sullivan, "Experimental study of the absorption in distilled water, artificial sea water and heavy water in the visible region of the spectrum," J. Opt. Soc. Am. 53, 962-968 (1963).
    [CrossRef]
  11. G. Rivoire and D. Wang, "Dynamics of CS2 in the large spectral bandwidth stimulated Rayleigh-Winn scattering," J. Chem. Phys. 99, 9460-9644 (1993).
    [CrossRef]
  12. Hong Su, Sing-hai Tang, Yi-qiang Qin, Chuan-wen Ge, Wei-jun Zhang, and Shi-xing Wang, "Investigation of the steady-state stimulated thermal scattering in absorbing media," Opt. Commun. 242, 649-657 (2004).
    [CrossRef]
  13. M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundamentals and Applications (Institute of Physics, 2003), pp. 1-42.
  14. A. D.Kudryavtseva and N. V.Tcherniega, "Spatial, spectral, and temporal characteristics of stimulated light scattering in water," J. Russ. Laser Res. 23, 288-297 (2002).
    [CrossRef]
  15. D'yakov and E. Yu, "Excitation of stimulated light scattering by broad-spectrum pumping," J. ETP Lett. 11, 243-246 (1970).
  16. P. Narum, M. D. Skeldom, and W.Boyd, "Effect of laser mode structure on stimulated Brillouin scattering," IEEE J. Quantum Electron. 22, 2161-2167 (1986).
    [CrossRef]

2007 (1)

Jinwei Shi, Guixin Li, Wenping Gong, Jianhui Bai, Yi Huang, Yinan Liu, Shujing Li, and Dahe Liu, "A lidar system based on stimulated Brillouin scattering," Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

2004 (2)

Hong Su, Sing-hai Tang, Yi-qiang Qin, Chuan-wen Ge, Wei-jun Zhang, and Shi-xing Wang, "Investigation of the steady-state stimulated thermal scattering in absorbing media," Opt. Commun. 242, 649-657 (2004).
[CrossRef]

R. Dai, W. Gong, J. Xu, X. Ren, and D. Liu, "The edge technique as used in Brillouin lidar for remote sensing of the ocean," Appl. Phys. B 79, 245-248 (2004).
[CrossRef]

2002 (1)

A. D.Kudryavtseva and N. V.Tcherniega, "Spatial, spectral, and temporal characteristics of stimulated light scattering in water," J. Russ. Laser Res. 23, 288-297 (2002).
[CrossRef]

1997 (3)

1993 (1)

G. Rivoire and D. Wang, "Dynamics of CS2 in the large spectral bandwidth stimulated Rayleigh-Winn scattering," J. Chem. Phys. 99, 9460-9644 (1993).
[CrossRef]

1991 (1)

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattwar, and E. S. Fry, "Aircraft laser sensing of sound velocity in water: Brillouin scattering," Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

1986 (1)

P. Narum, M. D. Skeldom, and W.Boyd, "Effect of laser mode structure on stimulated Brillouin scattering," IEEE J. Quantum Electron. 22, 2161-2167 (1986).
[CrossRef]

1984 (1)

1978 (1)

1970 (1)

D'yakov and E. Yu, "Excitation of stimulated light scattering by broad-spectrum pumping," J. ETP Lett. 11, 243-246 (1970).

1963 (1)

Appl. Opt. (4)

Appl. Phys. B (2)

R. Dai, W. Gong, J. Xu, X. Ren, and D. Liu, "The edge technique as used in Brillouin lidar for remote sensing of the ocean," Appl. Phys. B 79, 245-248 (2004).
[CrossRef]

Jinwei Shi, Guixin Li, Wenping Gong, Jianhui Bai, Yi Huang, Yinan Liu, Shujing Li, and Dahe Liu, "A lidar system based on stimulated Brillouin scattering," Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Narum, M. D. Skeldom, and W.Boyd, "Effect of laser mode structure on stimulated Brillouin scattering," IEEE J. Quantum Electron. 22, 2161-2167 (1986).
[CrossRef]

J. Chem. Phys. (1)

G. Rivoire and D. Wang, "Dynamics of CS2 in the large spectral bandwidth stimulated Rayleigh-Winn scattering," J. Chem. Phys. 99, 9460-9644 (1993).
[CrossRef]

J. ETP Lett. (1)

D'yakov and E. Yu, "Excitation of stimulated light scattering by broad-spectrum pumping," J. ETP Lett. 11, 243-246 (1970).

J. Opt. Soc. Am. (1)

J. Russ. Laser Res. (1)

A. D.Kudryavtseva and N. V.Tcherniega, "Spatial, spectral, and temporal characteristics of stimulated light scattering in water," J. Russ. Laser Res. 23, 288-297 (2002).
[CrossRef]

Opt. Commun. (1)

Hong Su, Sing-hai Tang, Yi-qiang Qin, Chuan-wen Ge, Wei-jun Zhang, and Shi-xing Wang, "Investigation of the steady-state stimulated thermal scattering in absorbing media," Opt. Commun. 242, 649-657 (2004).
[CrossRef]

Proc. SPIE (1)

Y. Emery and E. S. Fry, "Laboratory development of a LIDAR for measurement of sound velocity in the ocean using Brillouin scattering," Proc. SPIE 2963, 210-215 (1997).
[CrossRef]

Remote Sens. Eviron. (1)

G. D. Hickman, J. M. Harding, M. Carnes, A. Pressman, G. W. Kattwar, and E. S. Fry, "Aircraft laser sensing of sound velocity in water: Brillouin scattering," Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Other (2)

N. G. Jerlov, Marine Optics, Elsevier Oceanography Series 14 (Elsevier Scientific, 1976), Chap. 3.3.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundamentals and Applications (Institute of Physics, 2003), pp. 1-42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical layout for measuring the attenuation coefficient of a pulsed laser in water:1, rear mirror; 2, Pockels cell; 3, 1∕4 wave plate; 4, dielectric polarizer; 5, oscillator rod; 6, output coupler; 7, IR mirror; 8, amplifier rod; 9, second harmonic generator; 10, polarizer; 11, beam splitter; 12, water cell; D1 is detector 1 and D2 is detector 2.

Fig. 2
Fig. 2

Experimental measurements of the attenuation coefficient of a pulsed laser beam in water. Filled circles represent the measured results with a narrow-bandwidth laser. Asterisks represent the measured results with wide-bandwidth laser. (a) l = 0.8   m , (b) l = 1.2   m , (c) l = 1.6   m , (d) l = 2.0   m .

Fig. 3
Fig. 3

Measurements of the Brillouin scattering spectra of a narrow-bandwidth laser in water. The wavelength of the laser is 532   nm . The two spectra are measured at the same position in the water sample. (a) Spectrum of spontaneous Brillouin scattering when the pulse energy of the laser beam is below the threshold value. (b) Spectrum of stimulated Brillouin scattering when the pulse energy of the laser beam is above the threshold value.

Fig. 4
Fig. 4

Calculated attenuation coefficient in a 1 m long water cell as a function of K, where K = [ g I p ( 0 ) + α ] / l 30 .

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I 2 = I 1 k 1 k 2 2 T 1 4 ,
I 2 = I 1 k 1 k 2 2 T 1 2 T 2 2   exp ( γ l ) ,
γ = 1 l   ln [ I 2 / I 1 I 2 / I 1 0.928 ] .
z I p = g I p I s α I p ,
z I s = g I p I s + α I s ,
z I p = α I p .
I s ( z ) = I s ( l ) exp [ g I p ( 0 ) ( e α z e α l ) α α ( l z ) ] , ( I < I C M )
I s ( z ) = I s ( l ) exp { [ g I p ( 0 ) α ] ( l z ) } .
γ = ln { exp ( α l ) I s ( l ) I p ( 0 )   exp [ g I p ( 0 ) + α ] l } / l .

Metrics