Abstract

The European Space Agency will launch the Atmospheric Laser Doppler Instrument (ALADIN) for global wind profile observations in the near future. The potential of ALADIN to measure the optical properties of aerosol and cirrus, as well, is investigated based on simulations. A comprehensive data analysis scheme is developed that includes (a) the correction of Doppler-shifted particle backscatter interference in the molecular backscatter channels (cross-talk effect), (b) a procedure that allows us to check the quality of the cross-talk correction, and (c) the procedures for the independent retrieval of profiles of the volume extinction and backscatter coefficients of particles considering the height-dependent ALADIN signal resolution. The error analysis shows that the particle backscatter and extinction coefficients, and the corresponding extinction-to-backscatter ratio (lidar ratio), can be obtained with an overall (systematic + statistical) error of 10%–15%, 15%–30%, and 20%–35%, respectively, in tropospheric aerosol and dust layers with extinction values from 50  to  200Mm1; 700-shot averaging (50  km horizontal resolution) is required. Vertical signal resolution is 500  m in the lower troposphere and 1000  m in the free troposphere. In cirrus characterized by extinction coefficients of 200Mm1 and an optical depth of >0.2, backscatter coefficients, optical depth, and column lidar ratios can be obtained with 25%–35% relative uncertainty and a horizontal resolution of 10  km (140 shots). In the stratosphere, only the backscatter coefficient of aerosol layers and polar stratospheric clouds can be retrieved with an acceptable uncertainty of 15%–30%. Vertical resolution is 2000 m.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. European Space Agency, Atmospheric Dynamics Mission, Report for Mission Selection, ESA-SP 1233(4), ESTEC, Noordwijk, The Netherlands (1999).
  2. A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
    [CrossRef]
  3. M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).
  4. M.-L. Chanin, A. Hauchecorne, A. Garnier, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989).
    [CrossRef]
  5. A. Garnier and M.-L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).
    [CrossRef]
  6. C. L. Korb, B. M. Gentry, and C. Y. Weng, "Edge technique: theory and application to the lidar measurement of atmospheric wind," Appl. Opt. 31, 4202-4212 (1992).
    [CrossRef] [PubMed]
  7. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).
    [CrossRef]
  8. C. Souprayen, A. Garnier, and A. Hertzog, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999).
    [CrossRef]
  9. B. M. Gentry, H. Chen, and S. X. Li, "Wind measurements with 355 nm molecular Doppler lidar," Opt. Lett. 25, 1231-1233 (2000).
    [CrossRef]
  10. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
    [CrossRef]
  11. H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983).
    [CrossRef] [PubMed]
  12. C. J. Grund and E. W. Eloranta, "Fiber-optic scrambler reduces the bandpass range dependence of Fabry-Perot etalons used for spectral analysis of lidar backscatter," Appl. Opt. 30, 2668-2670 (1991).
    [CrossRef] [PubMed]
  13. C. Y. She, R. J. Alvarez, II, M. Caldwell, and D. A. Krueger, "High-spectral-resolution Rayleigh-Mie lidar measurement of aerosol and atmospheric profiles," Opt. Lett. 17, 541-543 (1992).
    [CrossRef] [PubMed]
  14. P. Piironen and E. W. Eloranta, "Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter," Opt. Lett. 19, 234-236 (1994).
    [CrossRef] [PubMed]
  15. Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
    [CrossRef]
  16. J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
    [CrossRef]
  17. E. W. Eloranta, "High spectral resolution lidar," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 143-163.
  18. A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-141.
  19. European Space Agency, "Earth Clouds, Aerosols, and Radiation Explorer," Rep. ESA SP-1279(1), ESTEC, Noordwijk, The Netherlands (2004).
  20. M. P. McCormick, "Airborne and spaceborne lidars," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 355-397.
  21. J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
    [CrossRef]
  22. D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).
  23. A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
    [CrossRef]
  24. K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
    [CrossRef]
  25. U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
    [CrossRef]
  26. A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).
  27. D. Bruneau and J. Pelon, "Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment," Appl. Opt. 42, 1101-1114 (2003).
    [CrossRef] [PubMed]
  28. M. Imaki and T. Kobayashi, "Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties," Appl. Opt. 44, 6023-6030 (2005).
    [CrossRef] [PubMed]
  29. P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).
  30. R. P. Sandoval and R. L. Armstrong, "Rayleigh-Brillouin spectra in molecular nitrogen," Phys. Rev. A 13, 752-757 (1976).
    [CrossRef]
  31. G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).
  32. A. Ansmann and U. Wandinger, ADM-Aeolus: Consolidation of Algorithms for Supplementary Geophysical Products--Cloud and Aerosol Backscatter and Extinction Profiling with the Spaceborne High-Spectral-Resolution Doppler Lidar ALADIN, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2007).
    [PubMed]
  33. C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).
  34. M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).
  35. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson, "Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique," Appl. Opt. 21, 1541-1553 (1982).
    [CrossRef] [PubMed]
  36. G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
    [CrossRef] [PubMed]
  37. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992).
    [CrossRef] [PubMed]
  38. R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
    [CrossRef]
  39. J. D. Klett, "Stable analytical solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981).
    [CrossRef] [PubMed]
  40. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984).
    [CrossRef] [PubMed]
  41. Y. Sasano, E. V. Browell, and S. Ismail, "Error caused by using a constant extinction/backscattering ratio in the lidar solution," Appl. Opt. 24, 3929-3932 (1985).
    [CrossRef] [PubMed]
  42. L. R. Bissonnette, "Lidar and multiple scattering," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43-103.
  43. R. J. Hogan, "Fast approximate calculation of multiply scattered lidar returns," Appl. Opt. 45, 5984-5992 (2006).
    [CrossRef] [PubMed]
  44. A. Bucholtz, "Rayleigh-scattering calculations for the terrestrial atmosphere," Appl. Opt. 34, 2765-2773 (1995).
    [CrossRef] [PubMed]

2007 (1)

A. Ansmann and U. Wandinger, ADM-Aeolus: Consolidation of Algorithms for Supplementary Geophysical Products--Cloud and Aerosol Backscatter and Extinction Profiling with the Spaceborne High-Spectral-Resolution Doppler Lidar ALADIN, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2007).
[PubMed]

2006 (2)

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

R. J. Hogan, "Fast approximate calculation of multiply scattered lidar returns," Appl. Opt. 45, 5984-5992 (2006).
[CrossRef] [PubMed]

2005 (8)

M. Imaki and T. Kobayashi, "Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties," Appl. Opt. 44, 6023-6030 (2005).
[CrossRef] [PubMed]

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

E. W. Eloranta, "High spectral resolution lidar," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 143-163.

A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-141.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

M. P. McCormick, "Airborne and spaceborne lidars," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 355-397.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

L. R. Bissonnette, "Lidar and multiple scattering," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43-103.

2004 (3)

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

European Space Agency, "Earth Clouds, Aerosols, and Radiation Explorer," Rep. ESA SP-1279(1), ESTEC, Noordwijk, The Netherlands (2004).

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
[CrossRef] [PubMed]

2003 (3)

D. Bruneau and J. Pelon, "Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment," Appl. Opt. 42, 1101-1114 (2003).
[CrossRef] [PubMed]

D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

2002 (1)

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

2001 (3)

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

2000 (1)

1999 (4)

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).
[CrossRef]

C. Souprayen, A. Garnier, and A. Hertzog, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999).
[CrossRef]

European Space Agency, Atmospheric Dynamics Mission, Report for Mission Selection, ESA-SP 1233(4), ESTEC, Noordwijk, The Netherlands (1999).

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

1998 (1)

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

1995 (2)

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

A. Bucholtz, "Rayleigh-scattering calculations for the terrestrial atmosphere," Appl. Opt. 34, 2765-2773 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (4)

1991 (1)

1989 (1)

M.-L. Chanin, A. Hauchecorne, A. Garnier, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989).
[CrossRef]

1985 (1)

1984 (1)

1983 (2)

H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

1982 (1)

1981 (1)

1976 (1)

R. P. Sandoval and R. L. Armstrong, "Rayleigh-Brillouin spectra in molecular nitrogen," Phys. Rev. A 13, 752-757 (1976).
[CrossRef]

1974 (1)

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

Ackermann, J.

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

Althausen, D.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

Alvarez, R. J.

Amiridis, V.

Amodeo, A.

Andersson, E.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Ansmann, A.

A. Ansmann and U. Wandinger, ADM-Aeolus: Consolidation of Algorithms for Supplementary Geophysical Products--Cloud and Aerosol Backscatter and Extinction Profiling with the Spaceborne High-Spectral-Resolution Doppler Lidar ALADIN, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2007).
[PubMed]

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-141.

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
[CrossRef] [PubMed]

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992).
[CrossRef] [PubMed]

Armstrong, R. L.

R. P. Sandoval and R. L. Armstrong, "Rayleigh-Brillouin spectra in molecular nitrogen," Phys. Rev. A 13, 752-757 (1976).
[CrossRef]

Bissonnette, L. R.

L. R. Bissonnette, "Lidar and multiple scattering," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43-103.

Böckmann, C.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

Boley, C. D.

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

Bösenberg, J.

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
[CrossRef] [PubMed]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

Browell, E. V.

Bruneau, D.

Bucholtz, A.

Caldwell, L. M.

Caldwell, M.

Chanin, M.-L.

A. Garnier and M.-L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, A. Garnier, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989).
[CrossRef]

Chen, H.

Culoma, A.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Dabas, A.

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

De Tomasi, F.

Demuth, D.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

Denneulin, M.-L.

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

Desai, R. C.

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

Dolfi-Bouteyre, A.

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

Dubock, P.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

Eloranta, E. W.

E. W. Eloranta, "High spectral resolution lidar," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 143-163.

P. Piironen and E. W. Eloranta, "Demonstration of a high-spectral-resolution lidar based on an iodine absorption filter," Opt. Lett. 19, 234-236 (1994).
[CrossRef] [PubMed]

C. J. Grund and E. W. Eloranta, "Fiber-optic scrambler reduces the bandpass range dependence of Fabry-Perot etalons used for spectral analysis of lidar backscatter," Appl. Opt. 30, 2668-2670 (1991).
[CrossRef] [PubMed]

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Endemann, M.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

Evans, K. D.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

Fernald, F. G.

Ferrare, R. A.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

Fiebig, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

Flamant, P.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Flamant, P. H.

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

Franke, K.

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

Freudenthaler, V.

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

Frioud, M.

Garnier, A.

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

C. Souprayen, A. Garnier, and A. Hertzog, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999).
[CrossRef]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).
[CrossRef]

A. Garnier and M.-L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, A. Garnier, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989).
[CrossRef]

Gentry, B. M.

Grams, G. W.

Grund, C. J.

Hair, J. W.

Hart, W. D.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

Hauchecorne, A.

Heese, B.

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

Herber, A.

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

Hertzog, A.

Hlavka, D. L.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

Hogan, R. J.

Iarlori, M.

Imaki, M.

Ingmann, P.

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

Isaksen, L.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Ismail, S.

Kähler, C.

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

Källén, E.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Klett, J. D.

Kobayashi, T.

Komguem, L.

Korb, C. L.

Krueger, D. A.

Lajas, D.

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

Le Rille, O.

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

Lee, S. A.

Leifer, R.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

Li, S. X.

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Livingston, J. M.

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Matthias, V.

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
[CrossRef] [PubMed]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

McCormick, M. P.

M. P. McCormick, "Airborne and spaceborne lidars," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 355-397.

D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).

Melfi, S. H.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

Meynart, R.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Michaelis, W.

Morançais, D.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

Morley, B. M.

Müller, D.

A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-141.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

Pailleux, J.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Palm, S. P.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

Pandolfi, M.

Papayannis, A.

Pappalardo, G.

Patterson, E. M.

Pelon, J.

Pelon, J. R.

D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).

Piironen, P.

Porteneuve, J.

Quenzel, H.

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

Rees, D.

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

Riebesell, M.

Rocadenbosch, F.

Roesler, F. L.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Russell, P. B.

Sandoval, R. P.

R. P. Sandoval and R. L. Armstrong, "Rayleigh-Brillouin spectra in molecular nitrogen," Phys. Rev. A 13, 752-757 (1976).
[CrossRef]

Sasano, Y.

Schyberg, H.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

She, C. Y.

Shimizu, H.

Shipley, S. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Souprayen, C.

Spinhirne, J. D.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

Sroga, J. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Stoffelen, A.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Stohl, A.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Tenti, G.

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

Tracy, D. H.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Trauger, J. T.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Vaughan, J. M.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Wagner, F.

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

Wandinger, U.

A. Ansmann and U. Wandinger, ADM-Aeolus: Consolidation of Algorithms for Supplementary Geophysical Products--Cloud and Aerosol Backscatter and Extinction Profiling with the Spaceborne High-Spectral-Resolution Doppler Lidar ALADIN, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2007).
[PubMed]

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
[CrossRef] [PubMed]

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992).
[CrossRef] [PubMed]

Wang, X.

Weinman, J. A.

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

Weiß, V.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

Weitkamp, C.

Welton, E. J.

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

Wendisch, M.

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

Weng, C. Y.

Wergen, W.

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Whiteman, D. N.

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

Wiegner, M.

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

Wimmer, R.

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

Winker, D. M.

D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).

Appl. Opt. (17)

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, and J. A. Weinman, "High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1. theory and instrumentation," Appl. Opt. 22, 3717-3724 (1983).
[CrossRef]

J. D. Klett, "Stable analytical solution for processing lidar returns," Appl. Opt. 20, 211-220 (1981).
[CrossRef] [PubMed]

P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, and E. M. Patterson, "Orbiting lidar simulations. 1. Aerosol and cloud measurements by an independent-wavelength technique," Appl. Opt. 21, 1541-1553 (1982).
[CrossRef] [PubMed]

H. Shimizu, S. A. Lee, and C. Y. She, "High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters," Appl. Opt. 22, 1373-1381 (1983).
[CrossRef] [PubMed]

F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652-653 (1984).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, and S. Ismail, "Error caused by using a constant extinction/backscattering ratio in the lidar solution," Appl. Opt. 24, 3929-3932 (1985).
[CrossRef] [PubMed]

C. J. Grund and E. W. Eloranta, "Fiber-optic scrambler reduces the bandpass range dependence of Fabry-Perot etalons used for spectral analysis of lidar backscatter," Appl. Opt. 30, 2668-2670 (1991).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, and C. Y. Weng, "Edge technique: theory and application to the lidar measurement of atmospheric wind," Appl. Opt. 31, 4202-4212 (1992).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, and W. Michaelis, "Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar," Appl. Opt. 31, 7113-7131 (1992).
[CrossRef] [PubMed]

A. Bucholtz, "Rayleigh-scattering calculations for the terrestrial atmosphere," Appl. Opt. 34, 2765-2773 (1995).
[CrossRef] [PubMed]

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. instrumental setup, validation, and first climatological results," Appl. Opt. 38, 2410-2421 (1999).
[CrossRef]

C. Souprayen, A. Garnier, and A. Hertzog, "Rayleigh-Mie Doppler wind lidar for atmospheric measurements. II. Mie scattering effect, theory, and calibration," Appl. Opt. 38, 2422-2431 (1999).
[CrossRef]

J. W. Hair, L. M. Caldwell, D. A. Krueger, and C. Y. She, "High-spectral-resolution lidar with iodine-vapor filters: measurement of atmospheric-state and aerosol profiles," Appl. Opt. 40, 5280-5294 (2001).
[CrossRef]

D. Bruneau and J. Pelon, "Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: principle of operation and performance assessment," Appl. Opt. 42, 1101-1114 (2003).
[CrossRef] [PubMed]

G. Pappalardo, A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bösenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, and X. Wang, "Aerosol lidar intercomparisons in the framework of EARLINET. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratios," Appl. Opt. 43, 5370-5385 (2004).
[CrossRef] [PubMed]

M. Imaki and T. Kobayashi, "Ultraviolet high-spectral-resolution Doppler lidar for measuring wind field and aerosol optical properties," Appl. Opt. 44, 6023-6030 (2005).
[CrossRef] [PubMed]

R. J. Hogan, "Fast approximate calculation of multiply scattered lidar returns," Appl. Opt. 45, 5984-5992 (2006).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Garnier and M.-L. Chanin, "Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere," Appl. Phys. B 55, 35-40 (1992).
[CrossRef]

Bull. Am. Meteor. Soc. (1)

A. Stoffelen, J. Pailleux, E. Källén, J. M. Vaughan, L. Isaksen, P. Flamant, W. Wergen, E. Andersson, H. Schyberg, A. Culoma, R. Meynart, M. Endemann, and P. Ingmann, "The Atmospheric Dynamics Mission for global wind field measurements," Bull. Am. Meteor. Soc. 86, 73-87 (2005).
[CrossRef]

Can. J. Phys. (1)

G. Tenti, C. D. Boley, and R. C. Desai, "On the kinetic model description of Rayleigh-Brillouin scattering from molecular gases," Can. J. Phys. 52, 285-290 (1974).

Geophys. Res. Lett. (3)

M.-L. Chanin, A. Hauchecorne, A. Garnier, and J. Porteneuve, "A Doppler lidar for measuring winds in the middle atmosphere," Geophys. Res. Lett. 16, 1273-1276 (1989).
[CrossRef]

K. Franke, A. Ansmann, D. Müller, D. Althausen, and F. Wagner, "One-year observations of particle lidar ratio over the tropical Indian Ocean with Raman lidar," Geophys. Res. Lett. 28, 4559-4562 (2001).
[CrossRef]

J. D. Spinhirne, S. P. Palm, W. D. Hart, D. L. Hlavka, and E. J. Welton, "Cloud and aerosol measurements from GLAS: overview and initial results," Geophys. Res. Lett. 32, 023507 (2005).
[CrossRef]

J. Geophys. Res. (3)

A. Ansmann, F. Wagner, D. Althausen, D. Müller, A. Herber, and U. Wandinger, "European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast," J. Geophys. Res. 106, 20725-20734 (2001).
[CrossRef]

U. Wandinger, D. Müller, C. Böckmann, D. Althausen, V. Matthias, J. Bösenberg, V. Weiß, M. Fiebig, M. Wendisch, A. Stohl, and A. Ansmann, "Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements," J. Geophys. Res. 107, 8125, doi: (2002).
[CrossRef]

R. A. Ferrare, S. H. Melfi, D. N. Whiteman, K. D. Evans, and R. Leifer, "Raman lidar measurements of aerosol extinction and backscattering. 1. methods and comparisons," J. Geophys. Res. 103, 19663-19672 (1998).
[CrossRef]

Opt. Eng. (1)

Z. Liu, I. Matsui, and N. Sugimoto, "High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements," Opt. Eng. 38, 1661-1670 (1999).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (1)

R. P. Sandoval and R. L. Armstrong, "Rayleigh-Brillouin spectra in molecular nitrogen," Phys. Rev. A 13, 752-757 (1976).
[CrossRef]

Other (13)

D. M. Winker, J. R. Pelon, and M. P. McCormick, "The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds," in Lidar Remote Sensing for Industry and Environment Monitoring III, U. N. Singh, T. Itabe, and Z. Liu, eds., Proc. SPIE 4893, 1-11 (2003).

A. Ansmann, P. Ingmann, O. Le Rille, D. Lajas, and U. Wandinger, "Particle backscatter and extinction profiling with the spaceborne HSR Doppler wind lidar ALADIN," in Reviewed and Revised Papers Presented at the 23rd ILRC, C. Nagasawa and N. Sugimoto, eds., pp. 1015-1018, 23rd International Laser Radar Conference (ILRC), Nara, Japan, 24-28 July (2006).

P. H. Flamant, A. Dabas, M.-L. Denneulin, A. Dolfi-Bouteyre, A. Garnier, and D. Rees, ILIAD: Impact of Line Shape on Aeolus-ADM Doppler Estimates, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2005).

European Space Agency, Atmospheric Dynamics Mission, Report for Mission Selection, ESA-SP 1233(4), ESTEC, Noordwijk, The Netherlands (1999).

M. Endemann, P. Dubock, P. Ingmann, R. Wimmer, D. Morançais, and D. Demuth, "The ADM-AEOLUS mission--the first wind lidar in space," in Reviewed and Revised Papers Presented at the 22nd International Laser Radar Conference (ILRC 2004), G. Pappalardo and A. Amodeo, eds., ESA SP-561, Vol. 2, 953-956 (ESTEC, 2004).

E. W. Eloranta, "High spectral resolution lidar," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 143-163.

A. Ansmann and D. Müller, "Lidar and atmospheric aerosol particles," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 105-141.

European Space Agency, "Earth Clouds, Aerosols, and Radiation Explorer," Rep. ESA SP-1279(1), ESTEC, Noordwijk, The Netherlands (2004).

M. P. McCormick, "Airborne and spaceborne lidars," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 355-397.

L. R. Bissonnette, "Lidar and multiple scattering," in LIDAR--Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, ed. (Springer, 2005), pp. 43-103.

A. Ansmann and U. Wandinger, ADM-Aeolus: Consolidation of Algorithms for Supplementary Geophysical Products--Cloud and Aerosol Backscatter and Extinction Profiling with the Spaceborne High-Spectral-Resolution Doppler Lidar ALADIN, ESA Contract Final Report (ESTEC, Noordwijk, The Netherlands, 2007).
[PubMed]

C. Kähler, J. Ackermann, M. Wiegner, H. Quenzel, A. Ansmann, and U. Wandinger, The Potential Contribution of a Backscatter Lidar to Climatological Studies, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (1995).

M. Wiegner, V. Freudenthaler, B. Heese, A. Ansmann, and U. Wandinger, EarthCARE Lidar Performance Simulations, ESA Contract Final Report, ESTEC, Noordwijk, The Netherlands (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

FI and double-edge FP1 and FP2 configuration for filtering the central aerosol backscatter peak (channel 1) and the two Rayleigh signals (channels 2 and 3, see Fig. 2). The light is partly transmitted through the FI and partly reflected. The reflected light is directed onto FP1. The channel-2 detector detects the transmitted light. The reflected light (from FP1) is partly transmitted through FP2; η TFI , η RFI , and η TFP describe the respective transmission and reflection efficiencies of FI and FP.

Fig. 2
Fig. 2

Spectral profiles of particle (thick solid peak) and Rayleigh backscattering (thick solid curve) and of the transmission functions (dashed curves) of the central channel 1 (FI, as assumed in the simulation) and of the channels 2 and 3 (double FP). The case for zero LOS velocity is shown. For ± 50 - m / s LOS velocity, the backscatter spectrum is shifted by ± 282   MHz .

Fig. 3
Fig. 3

Rayleigh signal correction procedure: (I) cross-talk correction; (II) correction of the velocity-induced Doppler shift of the Rayleigh backscatter line; and (III) correction of temperature-dependent Rayleigh line broadening. g 2 and g 3 describe the transmission profiles of the Rayleigh channels 2 and 3. The Rayleigh backscatter spectrum is given by the function h m .

Fig. 4
Fig. 4

Simulated atmospheric scenario. PBL reaches up to 2.5   km height, FTL is present up to 5.5   km height, and a thick cirrus layer extends from 8 to 13.5   km height. Moderate cirrus and aerosol extinction coefficients, realistic lidar ratios, and partly very high LOS velocities are simulated.

Fig. 5
Fig. 5

Particle backscatter and extinction coefficients determined from the ALADIN signals by applying the HSRL method. No correction of the background-corrected Rayleigh signals is applied in the case of the dashed curves. A full correction as described in Section 3 is applied in the case of the solid curves. The thin solid curves (left) show the true backscatter and extinction profiles with 50 m range resolution (as used in the signal simulation). Relative deviations (right) of the retrieved solutions from the respective true values are also shown. In the calculation of the systematic error, the true backscatter value is the mean backscatter coefficient of the range cell Δ z j from z j 0.5 Δ z j to z j + 0.5 Δ z j . In the case of the extinction coefficients, the retrieval range cell is a factor of two larger. The true mean extinction value for the range cell 2 Δ z j from z j 0.5 Δ z j to z j+1 + 0.5 Δ z j+1 is used in the calculation of the systematic error.

Fig. 6
Fig. 6

Influence of uncertainties in the LOS wind profile [Eq. (19)] on the particle backscatter and extinction coefficients determined from the ALADIN signals by applying the HSRL method. The atmospheric conditions in Fig. 4 are simulated. All signal corrections after Section 3 are applied. No velocity error is simulated in the case of the solid curves (same as in Fig. 5). A bias of + 30 m / s and 30 m / s throughout the entire troposphere is simulated in the case of the dashed and dotted curves, respectively. The thin solid curves (left) show the true backscatter and extinction profiles with 50   m range resolution (as used in the signal simulation).

Fig. 7
Fig. 7

Influence of uncertainties in the assumed transmissivity ( η TFP ) and reflectivity ( η RFP ) of FP (Rayleigh channels) on the retrieved backscatter and extinction coefficients. The true values η TFP = 0.86 and η RFP = 0.62 are used in the signal simulation. The dashed curves are obtained with η TFP = 0.83 and η RFP = 0.62 in the retrieval, the dotted curves with η TFP = 0.86 and η RFP = 0.60 in the retrieval. The solid curves show the case with no uncertainties in the input parameters.

Fig. 8
Fig. 8

Retrieval of the optimum cirrus lidar ratio S by applying the forward mode of the Klett method. The reference height is at approximately 17   km . The lidar ratio S is varied until the backscatter coefficient is close to zero at 6.5   km height.

Fig. 9
Fig. 9

Comparison of the optimum Klett solution (dash-dotted line, obtained with a lidar ratio of 11.8 sr) with several HSRL backscatter-coefficient solutions for different values of η 1 (solid, 0.0178, dashed 0.0175, 0.0183) to optimize the cross-talk correction.

Fig. 10
Fig. 10

Observations (140-shot average) of cirrus optical properties with ALADIN (HSRL method). No errors in the atmospheric and lidar system parameters are simulated in the case of the dashed curves. The solid curves are obtained by simulating realistic errors in all input parameters and after applying the quality check of cross-talk correction. Systematic deviations of the retrieved solutions from the respective input values used in the ALADIN signal simulation are shown (center). Statistical errors are caused by signal noise (right). Nighttime conditions are simulated. Thin solid curves (left) show the true backscatter and extinction profiles with 50-m range resolution (as used in the basic signal simulation from which the low-resolution ALADIN signals are then calculated).

Fig. 11
Fig. 11

Particle backscatter and extinction coefficients, extinction-to-backscatter ratio, and corresponding statistical uncertainties for 700-shot averages and nighttime (solid curves) and bright daytime conditions (dashed curves). Thin solid curves (left) show the true backscatter and extinction profiles with 50-m range resolution (as used in the signal simulation).

Tables (4)

Tables Icon

Table 1 ALADIN System Parameters ( λ 0 = 355 nm, ν 0 = 8.448 × 1014 Hz) as Used in the Simulations in Section 4. Parameters Are Explained in Detail in Section 3

Tables Icon

Table 2 Possible Mapping of Atmospheric Heights over Tropical, Mid-latitude, and Polar Regions. The Mie-Channel Profile Contains 22 Layers Above Ground and Determines the Maximum Height Up to Which Optical Properties Can Be Retrieved. Further Constraint Is That the Free Troposphere Should Be Resolved with 1000 m Resolution. The Tropopause Is Assumed to Be Below 12.5 km (Polar), 14.5 km (Mid-latitudes), and 16.5 km Height (Tropics). The Rayleigh Channels Sample 24 Signals (jmax = 24) Up to 26.5 m Height

Tables Icon

Table 3 Expected Total Uncertainties in the Backscatter and Extinction Coefficients, and the Lidar Ratio for 140-Shot (Cirrus, CI) and 700-Shot Averages (Aerosol, PSC), and Vertical Resolutions of 500 m (PBL Aerosol), 1000 m (Free Tropospheric Aerosol (FTL), CI), and 2000 m (Volcanically Disturbed Stratospheric Aerosol (SA), PSC) for Typical Extinction Conditions. Statistical and Input-Parameter-Related Systematic Uncertainties Are Considered only

Tables Icon

Table 4 Typical Overall Uncertainties in the Retrievable Quantities Considering Input Uncertainties, Statistical Errors, Depolarization, and Multiple Scattering Effects, and That Cirrus Cloud Depth Is Typically <3 km. OD and S col Denote Particle Optical Depth and Column Lidar Ratio, Respectively. Only Uncertainties <50% Are Listed

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

υ los ( z ) = λ 0 2 [ ν s ( z ) ν 0 ] ,
P i ( z ) = P 0 A ( z z 0 ) 2 η i [ f i a ( z ) β a ( z ) + f i m ( z ) β m ( z ) ] × τ 2 ( z , z 0 ) Δ z .
f 1 a ( z ) = g 1 ( ν s ν 1 ) ,
f 2 a ( z ) = g 2 ( ν s ν 2 ) ,
f 3 a ( z ) = g 3 ( ν s ν 3 ) [ 1 g 2 ( ν s ν 2 ) η TFP ] .
ν s ( z ) = ν 0 + 2 λ 0 υ los ( z ) .
g 1 ( ν ν 1 ) = 1 8.355 × 10 13 | ν ν 1 | 2.312 × 10 7 × | ν ν 1 | 2 + 2.624 × 10 18 | ν ν 1 | 3 3.706 × 10 13 | ν ν 1 | 4 ,
g i ( ν ν i ) = { 1 + 4 η RFP ( 1 η RFP ) 2 sin 2 [ π ( ν ν i ) cos   Θ γ FSR ] } 1 ,
f 1 m ( z ) = [ 1 0.0001 p ] h m ( ν ν s , T ) g 1 ( ν ν 1 ) d ν ,
f 2m ( z ) = h m ( ν ν s , T ) g 2 ( ν ν 2 ) d ν ,
f 3m ( z ) = h m ( ν ν s , T ) g 3 ( ν ν 3 ) [ 1 g 2 ( ν ν 2 ) η TFP ] d ν ,
γ D ( T ) = 2 ν 0 c 2 k T ( z ) ln   2 M ,
σ a ( z ) = 1 2 d d z { ln [ n m ( z ) P m ( z ) ( z z 0 ) 2 ] } σ m ( z ) ,
β a ( z ) = β m ( z ) f 1 m ( z ) + [ β a ( z Ref ) + β m ( z Ref ) f 1 m ( z ) ] × Y ( z ) Y ( z Ref ) ,
Y ( z ) = P 1 ( z ) P m ( z ) / n m ( z ) .
P i c ( z ) = [ P i ( z ) B i ( z ) ] C i ( z ) D i ( z ) ,
B i ( z ) = f i a ( z ) η i f 1a ( z ) η 1 P 1 ( z ) ,
C i ( z ) = f i m ( υ los = 0 , T ) f i m ( υ los , T ) .
D i ( z ) = f i m ( υ los = 0 , T = 273   K ) f i m ( υ los = 0 , T ) .
P m ( z ) = P 2c ( z ) + P 3c ( z ) × η 2 f 2m ( υ los = 0 , T = 273   K ) η 3 f 3m ( υ los = 0 , T = 273   K ) .
B 2 + f 2m η 2 f 3m η 3 B 3 [ f 2a f 1 a + f 3a f 1a f 2m f 3m ] × η 2 η 1 P 1 .
X m ( z j ) = P m ( z j ) ( z j z 0 ) 2 τ m 2 ( z j , z jmax ) n m ( z j ) ,
σ a ( z j , z j + 1 ) = 1 2 Δ z j + 1   ln [ X m ( z j + 1 ) X m ( z j ) ] ,
σ a ( z j 1 , z j + 1 ) = 1 2 Δ z j + 1   ln [ X m ( z j + 1 ) [ X m ( z j 1 ) + X m ( z j ) ] ] .
S a ( z j , z j + 1 ) = σ a ( z j , z j + 1 ) [ β a ( z j ) + β a ( z j + 1 ) ] / 2 .
S a ( z j 1 , z j + 1 ) = σ a ( z j 1 , z j + 1 ) [ 0.5 β a ( z j 1 ) + 0.5 β a ( z j ) + β a ( z j + 1 ) ] / 2 .
β a ( z j ) = β m ( z j ) f 1 m ( z j ) + [ P 1 , z 2 ( z j ) / Δ z j ] τ 1 2 ( z j , z Ref ) B C ( z Ref ) 2 z j z Ref S a ( z ) [ P 1 , z 2 ( z ) / Δ z ] τ 1 2 ( z , z Ref ) d z ,
P 1 , z 2 ( z j ) = P 1 ( z j ) ( z j z 0 ) 2 ,
τ 1 ( z j , z Ref ) = exp { z j z Ref [ S a ( z ) S m f 1 m ( z ) ] × β m ( z ) f 1 m ( z ) d z } ,
B C ( z Ref ) = P 1 , z 2 ( z Ref ) / Δ z Ref β a ( z Ref ) + β m ( z Ref ) f 1 m ( z Ref ) .
δ χ obs χ true = χ obs χ true χ true .
δ β a ( z j ) β a ( z j ) = β a ( z j ) + β m ( z j ) f 1 m ( z j ) β a ( z j ) × t a ( z j ) + t a ( z Ref ) + t m ( z j ) + t m ( z Ref ) ,
t a ( z j ) = P 1 ( z j ) + 2 P 1 B P 1 2 ( z j ) ,
t m ( z j ) = P m ( z j ) + 2 ( P 2B + P 3B ) P m 2 ( z j ) .
δ σ a ( z j , z j + 1 ) σ a ( z j , z j + 1 ) = 1 2 σ a ( z j , z j + 1 ) Δ z j + 1 t m ( z j ) + t m ( z j + 1 ) .
δ σ a ( z j 1 , z j + 1 ) σ a ( z j 1 , z j + 1 ) = 1 2 σ a ( z j 1 , z j + 1 ) Δ z j + 1 × t m ( z j 1 ) + t m ( z j ) + t m ( z j + 1 ) .
P i ,meas ( z j ) = P i ( z j ) + P i B
P i ,meas ( z j ) = P i ( z j ) + P i B + b i ( z j ) P 1 ( z j ) ,
t m ( z j ) = P m ( z j ) + 2 ( P 2B + P 3B ) + 2 [ b 2 ( z j ) + b 3 ( z j ) ] P 1 ( z j ) P m 2 ( z j ) .
t m ( z j ) P m ( z j ) + 2 ( P 2B + P 3B ) + 4 P 1 ( z j ) P m 2 ( z j ) .

Metrics