Abstract

In accordance with the present international standard for intraocular lenses (IOLs), their imaging performance should be measured in a model eye having an aberration-free cornea. This was an acceptable setup when IOLs had all surfaces spherical and hence the measured result reflected the spherical aberration of the IOL. With newer IOLs designed to compensate for the spherical aberration of the cornea there is a need for a model eye with a physiological level of spherical aberration in the cornea. A literature review of recent studies indicated a fairly high amount of spherical aberration in human corneas. Two model eyes are proposed. One is a modification of the present ISO standard, replacing the current achromat doublet with an aspheric singlet cut in poly(methyl methacrylate) (PMMA). The other also has an aspheric singlet cut in PMMA, but the dimensions of it and the entire model eye are close to the physiological dimensions of the eye. They give equivalent results when the object is at infinity, but for finite object distances only the latter is correct. The two models are analyzed by calculation assuming IOLs with different degrees of asphericity to elucidate their sensitivity to variation and propose tolerances. Measured results in a variant of the modified ISO model eye are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. ISO 11979-2, Ophthalmic implants--Intraocular lenses--Part 2: optical properties and test methods (International Organization for Standardization, 1999).
  2. N. E. S. Norrby, "Standardized methods for assessing the imaging quality of intraocular lenses," Appl. Opt. 34, 7327-7333 (1995).
    [CrossRef] [PubMed]
  3. A. Gullstrand, "The dioptrics of the eye," in Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, 1924), Vol. 1, pp. 351-352.
  4. H. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), pp. 8and142.
  5. W. Lotmar, "Theoretical eye model with aspherics," J. Opt. Soc. Am. 61, 1522-1529 (1971).
    [CrossRef]
  6. H. L. Liou and N. A. Brennan, "The prediction of spherical aberration with schematic eyes," Ophthalmic Physiol. Opt. 16, 348-354 (1996).
    [CrossRef] [PubMed]
  7. H. L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
    [CrossRef]
  8. M. Dubbelman and G. L. van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index, and the lens paradox," Vision Res. 41, 1867-1877 (2001).
    [CrossRef] [PubMed]
  9. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001).
    [CrossRef]
  10. M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
    [CrossRef] [PubMed]
  11. M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005).
    [CrossRef]
  12. S. Norrby, "The Dubbelman eye model analyzed by ray tracing through aspheric surfaces," Ophthalmic Physiol. Opt. 25, 153-161 (2005).
    [CrossRef] [PubMed]
  13. P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Opt. Acta 29, 1027-1040 (1982).
    [CrossRef]
  14. J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
    [PubMed]
  15. L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
    [CrossRef]
  16. R. Bellucci, S. Morselli, and P. Piers, "Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses," J. Refract. Surg. 20, 297-306 (2004).
    [PubMed]
  17. A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual Sci. 45, 4312-4319 (2004).
    [CrossRef]
  18. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).
  19. A. Guirao, M. Redondo, and P. Artal, "Optical aberrations of the human cornea as a function of age," J. Opt. Soc. Am. A 17, 1697-1702 (2000).
    [CrossRef]
  20. M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
    [CrossRef]
  21. Y. LeGrand, Form and Space, translated by M. Millodot and G. G. Heath (Indiana U. Press, 1967).
  22. G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
    [CrossRef]
  23. S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).
  24. U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract Refractive Surg. 29, 652-660 (2003).
    [CrossRef]
  25. G. E. Altmann, inventor: Bausch & Lomb, Inc., assignee, "Lens-eye model and method for predicting in vivo lens performance," U.S. patent 6,626,535 (30 September 2003).
  26. T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).
  27. M. H. van der Mooren, H. A. Weeber, and P. A. Piers, "Verification of the average cornea eye ACE model," poster 309 presented at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Florida, USA, 30 April-4 May 2006.
  28. B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005).
    [CrossRef]
  29. P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
    [PubMed]

2007

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

2006

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
[CrossRef]

M. H. van der Mooren, H. A. Weeber, and P. A. Piers, "Verification of the average cornea eye ACE model," poster 309 presented at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Florida, USA, 30 April-4 May 2006.

2005

B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005).
[CrossRef]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
[CrossRef]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005).
[CrossRef]

S. Norrby, "The Dubbelman eye model analyzed by ray tracing through aspheric surfaces," Ophthalmic Physiol. Opt. 25, 153-161 (2005).
[CrossRef] [PubMed]

2004

R. Bellucci, S. Morselli, and P. Piers, "Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses," J. Refract. Surg. 20, 297-306 (2004).
[PubMed]

A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual Sci. 45, 4312-4319 (2004).
[CrossRef]

2003

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).

U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract Refractive Surg. 29, 652-660 (2003).
[CrossRef]

G. E. Altmann, inventor: Bausch & Lomb, Inc., assignee, "Lens-eye model and method for predicting in vivo lens performance," U.S. patent 6,626,535 (30 September 2003).

2002

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

2001

M. Dubbelman and G. L. van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index, and the lens paradox," Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001).
[CrossRef]

2000

1999

ISO 11979-2, Ophthalmic implants--Intraocular lenses--Part 2: optical properties and test methods (International Organization for Standardization, 1999).

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).

1997

1996

H. L. Liou and N. A. Brennan, "The prediction of spherical aberration with schematic eyes," Ophthalmic Physiol. Opt. 16, 348-354 (1996).
[CrossRef] [PubMed]

1995

1992

T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).

1982

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Opt. Acta 29, 1027-1040 (1982).
[CrossRef]

1971

1967

Y. LeGrand, Form and Space, translated by M. Millodot and G. G. Heath (Indiana U. Press, 1967).

1924

A. Gullstrand, "The dioptrics of the eye," in Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, 1924), Vol. 1, pp. 351-352.

1867

H. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), pp. 8and142.

Altmann, G. E.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
[CrossRef]

G. E. Altmann, inventor: Bausch & Lomb, Inc., assignee, "Lens-eye model and method for predicting in vivo lens performance," U.S. patent 6,626,535 (30 September 2003).

Anterist, N.

U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract Refractive Surg. 29, 652-660 (2003).
[CrossRef]

Applegate, R. A.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).

Artal, P.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

B. Vohnsen, I. Iglesias, and P. Artal, "Guided light and diffraction model of human-eye photoreceptors," J. Opt. Soc. Am. A 22, 2318-2328 (2005).
[CrossRef]

A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual Sci. 45, 4312-4319 (2004).
[CrossRef]

S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).

A. Guirao, M. Redondo, and P. Artal, "Optical aberrations of the human cornea as a function of age," J. Opt. Soc. Am. A 17, 1697-1702 (2000).
[CrossRef]

Bellucci, R.

R. Bellucci, S. Morselli, and P. Piers, "Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses," J. Refract. Surg. 20, 297-306 (2004).
[PubMed]

Brennan, N. A.

H. L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
[CrossRef]

H. L. Liou and N. A. Brennan, "The prediction of spherical aberration with schematic eyes," Ophthalmic Physiol. Opt. 16, 348-354 (1996).
[CrossRef] [PubMed]

Carney, L. G.

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Opt. Acta 29, 1027-1040 (1982).
[CrossRef]

Corydon, L.

T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).

Dai, E.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

Dillinger, P.

U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract Refractive Surg. 29, 652-660 (2003).
[CrossRef]

Dubbelman, M.

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
[CrossRef]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001).
[CrossRef]

M. Dubbelman and G. L. van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index, and the lens paradox," Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

Guirao, A.

A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual Sci. 45, 4312-4319 (2004).
[CrossRef]

A. Guirao, M. Redondo, and P. Artal, "Optical aberrations of the human cornea as a function of age," J. Opt. Soc. Am. A 17, 1697-1702 (2000).
[CrossRef]

Gullstrand, A.

A. Gullstrand, "The dioptrics of the eye," in Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, 1924), Vol. 1, pp. 351-352.

Helmholtz, H.

H. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), pp. 8and142.

Holladay, J. T.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Howland, H. C.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).

Iglesias, I.

Kiely, P. M.

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Opt. Acta 29, 1027-1040 (1982).
[CrossRef]

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).

Koch, D. D.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

Koranyi, G.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Lane, S. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
[CrossRef]

LeGrand, Y.

Y. LeGrand, Form and Space, translated by M. Millodot and G. G. Heath (Indiana U. Press, 1967).

Liou, H. L.

H. L. Liou and N. A. Brennan, "Anatomically accurate, finite model eye for optical modeling," J. Opt. Soc. Am. A 14, 1684-1695 (1997).
[CrossRef]

H. L. Liou and N. A. Brennan, "The prediction of spherical aberration with schematic eyes," Ophthalmic Physiol. Opt. 16, 348-354 (1996).
[CrossRef] [PubMed]

Lotmar, W.

Mester, U.

U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract Refractive Surg. 29, 652-660 (2003).
[CrossRef]

Morselli, S.

R. Bellucci, S. Morselli, and P. Piers, "Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses," J. Refract. Surg. 20, 297-306 (2004).
[PubMed]

Nathoo, A.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

Nichamin, L. D.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
[CrossRef]

Norrby, N. E. S.

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

N. E. S. Norrby, "Standardized methods for assessing the imaging quality of intraocular lenses," Appl. Opt. 34, 7327-7333 (1995).
[CrossRef] [PubMed]

Norrby, S.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

S. Norrby, "The Dubbelman eye model analyzed by ray tracing through aspheric surfaces," Ophthalmic Physiol. Opt. 25, 153-161 (2005).
[CrossRef] [PubMed]

S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).

Olesen, H.

T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).

Olsen, T.

T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).

Oshika, T.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).

Pepose, J. S.

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
[CrossRef]

Piers, P.

R. Bellucci, S. Morselli, and P. Piers, "Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses," J. Refract. Surg. 20, 297-306 (2004).
[PubMed]

Piers, P. A.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

M. H. van der Mooren, H. A. Weeber, and P. A. Piers, "Verification of the average cornea eye ACE model," poster 309 presented at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Florida, USA, 30 April-4 May 2006.

S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

Redondo, M.

Sicam, V. A. D. P.

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
[CrossRef]

Smith, G.

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Opt. Acta 29, 1027-1040 (1982).
[CrossRef]

Tejedor, J.

A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual Sci. 45, 4312-4319 (2004).
[CrossRef]

Thim, K.

T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).

Van der Heijde, G. L.

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
[CrossRef]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001).
[CrossRef]

M. Dubbelman and G. L. van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index, and the lens paradox," Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

van der Mooren, M.

S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

van der Mooren, M. H.

M. H. van der Mooren, H. A. Weeber, and P. A. Piers, "Verification of the average cornea eye ACE model," poster 309 presented at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Florida, USA, 30 April-4 May 2006.

Vohnsen, B.

Völker-Dieben, H. J.

M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

Wang, L.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

Weeber, H. A.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

M. H. van der Mooren, H. A. Weeber, and P. A. Piers, "Verification of the average cornea eye ACE model," poster 309 presented at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Florida, USA, 30 April-4 May 2006.

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001).
[CrossRef]

Acta Ophthalmol. Scand.

M. Dubbelman, H. A. Weeber, G. L. van der Heijde, and H. J. Völker-Dieben, "Radius and asphericity of the posterior corneal surface determined by corrected Scheimpflug photography," Acta Ophthalmol. Scand. 80, 379-383 (2002).
[CrossRef] [PubMed]

Appl. Opt.

Invest. Ophthalmol. Visual Sci.

A. Guirao, J. Tejedor, and P. Artal, "Corneal aberrations before and after small-incision cataract surgery," Invest. Ophthalmol. Visual Sci. 45, 4312-4319 (2004).
[CrossRef]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, "Changes in corneal wavefront aberrations with aging," Invest. Ophthalmol. Visual Sci. 40, 1351-1355 (1999).

J. Cataract Refractive Surg.

L. Wang, E. Dai, D. D. Koch, and A. Nathoo, "Optical aberrations of the human anterior cornea," J. Cataract Refractive Surg. 29, 1514-1521 (2003).
[CrossRef]

G. E. Altmann, L. D. Nichamin, S. S. Lane, and J. S. Pepose, "Optical performance of 3 intraocular lens designs in the presence of decentration," J. Cataract Refractive Surg. 31, 574-585 (2005).
[CrossRef]

U. Mester, P. Dillinger, and N. Anterist, "Impact of a modified optic design on visual function: clinical comparative study," J. Cataract Refractive Surg. 29, 652-660 (2003).
[CrossRef]

T. Olsen, H. Olesen, K. Thim, and L. Corydon, "Prediction of pseudophakic anterior chamber depth with the newer IOL calculation formulas," J. Cataract Refractive Surg. 18, 280-285 (1992).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Refract. Surg.

P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, "Design and performance of customized IOLs," J. Refract. Surg. 23, 374-384 (2007).
[PubMed]

J. T. Holladay, P. A. Piers, G. Koranyi, M. van der Mooren, and N. E. S. Norrby, "A new intraocular lens design to reduce spherical aberration of pseudophakic eyes," J. Refract. Surg. 18, 683-691 (2002).
[PubMed]

R. Bellucci, S. Morselli, and P. Piers, "Comparison of wavefront aberrations and optical quality of eyes implanted with five different intraocular lenses," J. Refract. Surg. 20, 297-306 (2004).
[PubMed]

Ophthalmic Physiol. Opt.

S. Norrby, "The Dubbelman eye model analyzed by ray tracing through aspheric surfaces," Ophthalmic Physiol. Opt. 25, 153-161 (2005).
[CrossRef] [PubMed]

H. L. Liou and N. A. Brennan, "The prediction of spherical aberration with schematic eyes," Ophthalmic Physiol. Opt. 16, 348-354 (1996).
[CrossRef] [PubMed]

Opt. Acta

P. M. Kiely, G. Smith, and L. G. Carney, "The mean shape of the human cornea," Opt. Acta 29, 1027-1040 (1982).
[CrossRef]

Optom. Vision Sci.

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "The thickness of the aging human lens obtained from corrected Scheimpflug images," Optom. Vision Sci. 78, 411-416 (2001).
[CrossRef]

Vision Res.

M. Dubbelman and G. L. van der Heijde, "The shape of the aging human lens: curvature, equivalent refractive index, and the lens paradox," Vision Res. 41, 1867-1877 (2001).
[CrossRef] [PubMed]

M. Dubbelman, G. L. van der Heijde, and H. A. Weeber, "Change in shape of the aging human crystalline lens with accommodation," Vision Res. 45, 117-132 (2005).
[CrossRef]

M. Dubbelman, V. A. D. P. Sicam, and G. L. Van der Heijde, "The shape of the anterior and posterior surface of the aging human cornea," Vision Res. 46, 993-1001 (2006).
[CrossRef]

Other

Y. LeGrand, Form and Space, translated by M. Millodot and G. G. Heath (Indiana U. Press, 1967).

ISO 11979-2, Ophthalmic implants--Intraocular lenses--Part 2: optical properties and test methods (International Organization for Standardization, 1999).

A. Gullstrand, "The dioptrics of the eye," in Helmholtz's Treatise on Physiological Optics, J. P. C. Southall, ed. (Optical Society of America, 1924), Vol. 1, pp. 351-352.

H. Helmholtz, Handbuch der Physiologischen Optik (Leopold Voss, 1867), pp. 8and142.

S. Norrby, P. Artal, P. A. Piers, and M. van der Mooren, inventors, Pharmacia Groningen BV, assignee, "Methods of obtaining ophthalmic lenses providing the eye with reduced aberrations," U.S. patent 6,609,793 (26 August 2003).

M. H. van der Mooren, H. A. Weeber, and P. A. Piers, "Verification of the average cornea eye ACE model," poster 309 presented at the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Florida, USA, 30 April-4 May 2006.

G. E. Altmann, inventor: Bausch & Lomb, Inc., assignee, "Lens-eye model and method for predicting in vivo lens performance," U.S. patent 6,626,535 (30 September 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Two proposed new eye models. The iris pupil plane is indicated and its width is set at 3 mm in the drawings.

Fig. 2
Fig. 2

Three IOL models Tecnis Z9000 (○), LI61U (□), and SofPort AO (◊), together with the diffraction limit (thick curve), in the present ISO model eye (top), modified ISO model eye (middle), and physiological model eye (bottom) at 3.0 and 4.5   mm iris pupil sizes. In (a) the diffraction limit curve covers that for the SofPort AO IOL. For the Tecnis Z9000 IOL that is the case in (c), (d), and (e).

Fig. 3
Fig. 3

Three IOL models Tecnis Z9000 (○), LI61U (□), and SofPort AO (◊), together with the diffraction limit (thick curve), in the physiological model eye at 3.0 and 4.5   mm iris pupil sizes. With decentration the tangential (continuous curves) and sagittal (dashed curves) separate, except for SofPort AO. Top: Decentered 0.5   mm with maximum MTF at 100 cycles∕mm as focusing criterion (compare with Figs. 1(e)–1(f) for the centered case). Middle: Decentered 0.5   mm with minimum on-axis rms OPD as focusing criterion. Bottom: Centered with minimum on-axis rms OPD as focusing criterion. In (e) the diffraction limit curve covers that for the Tecnis Z9000 IOL.

Fig. 4
Fig. 4

Focus shift due to decentration and pupil size in the physiological model eye at different focus criteria. The focus position is the distance from the back window surface to focus. The Tecnis Z9000 IOL is not sensitive to pupil size but to decentration for the maximum MTF criterion, but not for the minimum OPD one. The SofPort AO and LI61U IOLs are insensitive to both pupil size and decentration at maximum MTF but quite sensitive to pupil size at minimum OPD.

Fig. 5
Fig. 5

Influence of axial position of the IOL in the physiological model eye at different pupil sizes with the Tecnis Z9000 IOL (○) and the LI61U IOL (□) at the nominal center position (continuous curve), 0.5   mm anterior (short dashes) and 0.5   mm posterior (long dashes). The influence of axial position of the IOL is of some influence for the well-corrected system with the Tecnis Z9000 IOL but negligible for the aberrated system with the LI61U IOL.

Fig. 6
Fig. 6

Influence of refractive index of the aqueous in the physiological eye model with the Tecnis Z9000 (○) and LI61U (□) IOLs. Nominal refractive index of the aqueous is 1.336 (dashed curve) compared with water 1.333 (continuous curve). This difference in refractive index appears to have a negligible effect on the MTF.

Fig. 7
Fig. 7

Performance in the physiological model eye of spherical lenses made of high refractive index material (1.55) or low refractive index material (1.43) of different shapes (PC, plano–convex, plano anterior; CP, convex–plano, convex anterior; BC, equi-bi-convex), in each combination for a power that is just passing the approval criterion, a modulation of 0.43 at 100 cycles / mm , in the present ISO model eye with 3 mm iris pupil. The powers of the lenses are: 1.55 PC: 26.10 D; 1.55 CP: 52.20 D; 1.55 BC: 47.59 D; 1.43 PC: 16.21 D; 1.43 CP: 26.48 D; 1.43 BC: 32.05 D. The mean modulation at 100 cycles∕mm in the physiological model eye with a 3   mm iris pupil is 0.27.

Fig. 8
Fig. 8

Through-focus MTF profiles at 25 cycles / mm with a 3.0   mm iris pupil for the SofPort AO IOL in the modified ISO and the physiological model eyes. Zero is at paraxial focus. Top: Through-focus profiles in image space as obtained by the oslo software from 0.6 to + 0.6   mm in 0.03   mm steps. Bottom: Through-focus profiles obtained by calculating the MTF for spectacle corrections from 2   D to + 2   D in 0.1 D increments. For through-focus response in image space the two models are equivalent, but clearly only the physiological model eye is adequate when generating the through-focus response in object space.

Fig. 9
Fig. 9

Physiological model eye modified to be mounted on a headrest before a wavefront eye refractor where it can be measured just as a human eye (bottom). The pieces are shown disassembled (top left) and assembled (top right). Instead of a rear window it has a rear section designed to act as an artificial retina. The retina is painted with Weathered Black Floquil model train paint to act as a diffuse reflector. By rotation on a thread, the retina can be moved in or out to obtain focus on it depending on the IOL power.

Fig. 10
Fig. 10

Several IOL models measured in a variant (see text) of the modified ISO model at two pupil sizes. Legend: AMO Tecnis Z9000 18.5 D (○), Alcon SN60WF 20.0 D (×), Canon KS-3Ai 20.0 D (▵), B&L L161AO 17.0 D (◊), Alcon SN60AT 18.0 D (+), and AMO CeeOn 911A 19.5 D (□) IOLs.

Tables (3)

Tables Icon

Table 1 Selection of Theoretical Cornea Models and Cornea Models Based on Measurement of Shape or Topography

Tables Icon

Table 2 Proposed Modified ISO Model Eye

Tables Icon

Table 3 Proposed Physiological Model Eye

Metrics