Abstract

A very-small-aperture laser (VSAL) with a circular aperture has a trade-off between the spot size and the output power. A nanometric annular aperture is fabricated to overcome this difficulty. The advantages of the annular aperture are demonstrated by measuring and comparing its near-field intensity distribution with that of a circular aperture. These apertures are fabricated on the same VSAL to ensure that they are under the same illumination conditions. The experimental results indicate that an annular aperture produces a smaller spot size and a higher peak intensity than a circular aperture. The confinement effect and the enhancement effect are attributed to the convergence of the power flow that passes through the annular aperture. The observed enhancement effect decreases when the distance from the VSAL facet is increased, but it does not vanish even when the distance is as large as 3.5  μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription