Abstract

Free-space optical communication (FSOC) is used to transmit a modulated beam of light through the atmosphere for broadband applications. Fundamental limitations of FSOC arise from the environment through which light propagates. We address transmitted light signal dispersion (spatial, angular, and temporal dispersion) in FSOC that operates in the battlefield environment. Light signals (photons) transmitted through the battlefield environment will interact with particles of man-made smoke such as fog oil, along the propagation path. Photon–particle interaction causes dispersion of light signals, which has significant effects on signal attenuation and pulse spread. We show that physical properties of battlefield particles play important roles in determining dispersion of received light signals. The correlation between spatial and angular dispersion is investigated as well, which has significant effects on receiver design issues. Moreover, our research indicates that temporal dispersion (delay spread) and the received power strongly depend on the receiver aperture size, field of view (FOV), and the position of the receiver relative to the optical axis of the transmitter. The results describe only specific scenarios for given types of battlefield particles. Generalization of the results requires additional work. Based on properties of the correlation, a sensitive receiver with a small FOV is needed that can find the line-of-sight photons and work with them.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
    [CrossRef]
  2. Scoot Stout, "Battle assesses risks of fog oil smoke," http://www.battelle.org/Enviroment/publications/envUpdates/Special2000/article4.html.
  3. E. A. Bucher, "Computer simulation of light pulse propagation for communication through thick clouds," Appl. Opt. 12, 2391-2400 (1973).
    [CrossRef] [PubMed]
  4. A. P. Ciervo, "Propagation through optically thick media," Appl. Opt. 34, 7137-7148 (1995).
    [CrossRef] [PubMed]
  5. S. Arnon, D. Sadot, and N. S. Kopeika, "Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations," J. Mod. Opt. 41, 1955-1972 (1994).
    [CrossRef]
  6. S. Arnon, D. Sadot, and N. S. Kopeika, "Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication," J. Mod. Opt. 41, 1591-1605 (1994).
    [CrossRef]
  7. S. Arnon and N. S. Kopeika, "Adaptive optical transmitter and receiver for space communication through thin clouds," Appl. Opt. 36, 1987-1993 (1997).
    [CrossRef] [PubMed]
  8. R. C. Shirkey and D. H. Tofsted, "Electro-optical aerosol phase function database, PFNDAT2005" (Army Research Laboratory, 2005).
  9. D. H. Pollock, The Infrared and Electro-Optical Systems Handbook: Countermeasure Systems (SPIE, 1993), Vol. 7.
  10. R. C. Weast and M. J. Astle, Handbook of Chemistry and Physics, 61st ed. (CRC, 1980-1981).
  11. W. M. Farmer, R. D. Morris, and F. A. Schwartz, "Optical particle size measurements of hygroscopic smokes in laboratory and field environments," Appl. Opt. 20, 3929-3940 (1981).
    [CrossRef] [PubMed]
  12. F. G. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2.
  13. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  14. B. Y. Hamzeh, Multi-rate Wireless Optical Communications in Cloud Obscured Channels, Ph.D. dissertation (The Pennsylvania State University, 2005).
  15. S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

2006 (1)

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

2005 (2)

R. C. Shirkey and D. H. Tofsted, "Electro-optical aerosol phase function database, PFNDAT2005" (Army Research Laboratory, 2005).

B. Y. Hamzeh, Multi-rate Wireless Optical Communications in Cloud Obscured Channels, Ph.D. dissertation (The Pennsylvania State University, 2005).

1997 (1)

1995 (1)

1994 (2)

S. Arnon, D. Sadot, and N. S. Kopeika, "Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations," J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, "Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication," J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

1993 (2)

D. H. Pollock, The Infrared and Electro-Optical Systems Handbook: Countermeasure Systems (SPIE, 1993), Vol. 7.

F. G. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2.

1988 (1)

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

1981 (1)

1980 (1)

R. C. Weast and M. J. Astle, Handbook of Chemistry and Physics, 61st ed. (CRC, 1980-1981).

1973 (1)

1957 (1)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Arnon, S.

S. Arnon and N. S. Kopeika, "Adaptive optical transmitter and receiver for space communication through thin clouds," Appl. Opt. 36, 1987-1993 (1997).
[CrossRef] [PubMed]

S. Arnon, D. Sadot, and N. S. Kopeika, "Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations," J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, "Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication," J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

Astle, M. J.

R. C. Weast and M. J. Astle, Handbook of Chemistry and Physics, 61st ed. (CRC, 1980-1981).

Bucher, E. A.

Ciervo, A. P.

Dwivedi, A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

Farmer, W. M.

Gagliardi, R. M.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Hammons, A. R.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

Hamzeh, B. Y.

B. Y. Hamzeh, Multi-rate Wireless Optical Communications in Cloud Obscured Channels, Ph.D. dissertation (The Pennsylvania State University, 2005).

Jones, S. D.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

Juarez, J. C.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

Karp, S.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Kopeika, N. S.

S. Arnon and N. S. Kopeika, "Adaptive optical transmitter and receiver for space communication through thin clouds," Appl. Opt. 36, 1987-1993 (1997).
[CrossRef] [PubMed]

S. Arnon, D. Sadot, and N. S. Kopeika, "Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations," J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, "Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication," J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

Moran, S. E.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Morris, R. D.

Nichols, R. A.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

Pollock, D. H.

D. H. Pollock, The Infrared and Electro-Optical Systems Handbook: Countermeasure Systems (SPIE, 1993), Vol. 7.

Sadot, D.

S. Arnon, D. Sadot, and N. S. Kopeika, "Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication," J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, "Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations," J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

Schwartz, F. A.

Shirkey, R. C.

R. C. Shirkey and D. H. Tofsted, "Electro-optical aerosol phase function database, PFNDAT2005" (Army Research Laboratory, 2005).

Smith, F. G.

F. G. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2.

Stotts, L. B.

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Stout, Scoot

Scoot Stout, "Battle assesses risks of fog oil smoke," http://www.battelle.org/Enviroment/publications/envUpdates/Special2000/article4.html.

Tofsted, D. H.

R. C. Shirkey and D. H. Tofsted, "Electro-optical aerosol phase function database, PFNDAT2005" (Army Research Laboratory, 2005).

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Weast, R. C.

R. C. Weast and M. J. Astle, Handbook of Chemistry and Physics, 61st ed. (CRC, 1980-1981).

Weerackody, V.

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

Appl. Opt. (4)

IEEE Commun. Mag. (1)

J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody, and R. A. Nichols, "Free-space optical communications for next-generation military networks," IEEE Commun. Mag. 44, 46-51 (2006).
[CrossRef]

J. Mod. Opt. (2)

S. Arnon, D. Sadot, and N. S. Kopeika, "Simple mathematical models for temporal, spatial, angular and attenuation characteristics of light propagating through the atmosphere for space optical communication: Monte Carlo simulations," J. Mod. Opt. 41, 1955-1972 (1994).
[CrossRef]

S. Arnon, D. Sadot, and N. S. Kopeika, "Analysis of optical pulse distortion through clouds for satellite to earth adaptive optical communication," J. Mod. Opt. 41, 1591-1605 (1994).
[CrossRef]

Other (8)

R. C. Shirkey and D. H. Tofsted, "Electro-optical aerosol phase function database, PFNDAT2005" (Army Research Laboratory, 2005).

D. H. Pollock, The Infrared and Electro-Optical Systems Handbook: Countermeasure Systems (SPIE, 1993), Vol. 7.

R. C. Weast and M. J. Astle, Handbook of Chemistry and Physics, 61st ed. (CRC, 1980-1981).

Scoot Stout, "Battle assesses risks of fog oil smoke," http://www.battelle.org/Enviroment/publications/envUpdates/Special2000/article4.html.

F. G. Smith, The Infrared & Electro-optical Systems Handbook: Atmospheric Propagating of Radiation (SPIE, 1993), Vol. 2.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

B. Y. Hamzeh, Multi-rate Wireless Optical Communications in Cloud Obscured Channels, Ph.D. dissertation (The Pennsylvania State University, 2005).

S. Karp, R. M. Gagliardi, S. E. Moran, and L. B. Stotts, Optical Channels: Fibers, Clouds, Water and the Atmosphere (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Photon encounters a particle (a single scattering event). The photon is either absorbed by the particle with a probability P a b s or scattered away with a scattering angle θ. Variable d is the traveling distance between two consecutive scatterings.

Fig. 2
Fig. 2

(Color online) Phase functions (PDFs) of fog oil particles at wavelength 1.55 μm in logarithmic scales.

Fig. 3
Fig. 3

Trajectory of a photon as it travels through the 3D space. d n , distance between two consecutive scatterings; θ n , angle between z n and z n + 1 axis; ϕ n , angle between the rotation of the scattering plane relative to the incident path; O n , nth scattering point.

Fig. 4
Fig. 4

Geometrical description of the computer simulation scheme.

Fig. 5
Fig. 5

Ray tracing simulation parameters and dimensions. The number of scattering events for the photon shown in the figure is three. L t is the total traveling distance that a photon travels through the cylinder. r, spatial dispersion; φ, angular dispersion.

Fig. 6
Fig. 6

(Color online) Two-dimensional histogram of spatial and angular dispersion of the received photons distributed in the z 1 = 40   m receiver plane ( L c h = 40   m ) .

Fig. 7
Fig. 7

(Color online) Received power for different FOV half-angles when L c h = 40   m . The aperture size is 7.5 cm (radius).

Fig. 8
Fig. 8

Simulation scheme for calculating the received power and temporal dispersion.

Fig. 9
Fig. 9

(Color online) Temporal dispersion of the received photons. The aperture size (radius) is 7.5 cm ; FOV half-angle is 2° and A B = 2.5   m .

Fig. 10
Fig. 10

(Color online) Received power versus AB for different FOV half-angles. The aperture size is 7.5 cm radius.

Tables (2)

Tables Icon

Table 1 Parameters of Eq. (3) for Battlefield Particles

Tables Icon

Table 2 Physical Properties of Fog Oil Particles at Wavelength 1.55 μm

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

p ( d ) = 1 / D a v e exp ( d / D a v e ) ,
D a v e = 1000 / k s ,
n ( r ) = N 0 2 π r ln σ g exp [ 1 2 ( ln r ln r g n ln σ g ) 2 ] ,
t d = ( L t L c h ) / c ,
P r = N r / N t ,
N r = N LOS + N s c a t .
P LOS = P t exp ( τ ) ,
τ = L c h / D a v e .

Metrics