Abstract

What we believe to be a new optical element consisting of a single piece isotropic material with three internally reflecting faces for polarization plane rotation by the angle ϕ=π/2 is proposed. The principle of operation is based on the geometrical phase effect, which is different in its origin but produces a similar effect to the circular birefringence. It is shown that the rotator made of polymer as well as silica glasses is not affected by the chromatic dispersion in a visible range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.
  2. F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
    [CrossRef]
  3. A. R. Chraplyvy, "Polarization flipper for infrared laser beams," Appl. Opt. 15, 2022-2023 (1976).
    [CrossRef] [PubMed]
  4. A. G. Klein, "Novel prism for use in scanning systems," Appl. Opt. 12, 616-617 (1973).
    [CrossRef] [PubMed]
  5. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
    [CrossRef]
  6. N. I. Petrov, "Evolution of Berry's phase in a graded-index medium," Phys. Lett. A 234, 239-250 (1997).
    [CrossRef]
  7. L. L. Smith and P. M. Koch, "Use of four mirrors to rotate linear polarization but preserve input-output collinearity," J. Opt. Soc. Am. A 13, 2102-2105 (1996).
    [CrossRef]
  8. E. J. Galvez and P. M. Koch, "Use of four mirrors to rotate linear polarization but preserve input-output collinearity. II," J. Opt. Soc. Am. A 14, 3410-3414 (1997).
    [CrossRef]
  9. L. H. Johnston, "Broadband polarization rotator for the infrared," Appl. Opt. 16, 1082-1084 (1977).
    [PubMed]
  10. C. E. Greninger, "Reflective device for polarization rotation," Appl. Opt. 27, 774-776 (1988).
    [CrossRef] [PubMed]
  11. I. Freund, "Antilocalization of light," Phys. Rev. A 37, 1007-1008 (1988).
    [CrossRef] [PubMed]
  12. E. J. Galvez and C. D. Holmes, "Geometric phase of optical rotators," J. Opt. Soc. Am. A 16, 1981-1985 (1999).
    [CrossRef]
  13. N. I. Petrov, "Reflection and transmission of strongly focused vector beams at a dielectric interface," Opt. Lett. 29, 421-423 (2004).
    [CrossRef] [PubMed]
  14. E. J. Galvez, "Achromatic polarization-preserving beam displacer," Opt. Lett. 26, 971-973 (2001).
    [CrossRef]

2004

2001

1999

1997

1996

1988

1984

M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
[CrossRef]

1977

1976

1975

F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
[CrossRef]

1973

1959

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Berry, M. V.

M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Chraplyvy, A. R.

Freund, I.

I. Freund, "Antilocalization of light," Phys. Rev. A 37, 1007-1008 (1988).
[CrossRef] [PubMed]

Galvez, E. J.

Greninger, C. E.

Holmes, C. D.

Johnston, L. H.

Keilmann, F.

F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
[CrossRef]

Klein, A. G.

Koch, P. M.

Petrov, N. I.

Smith, L. L.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Appl. Opt.

J. Opt. Soc. Am. A

Opt. Commun.

F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
[CrossRef]

Opt. Lett.

Phys. Lett. A

N. I. Petrov, "Evolution of Berry's phase in a graded-index medium," Phys. Lett. A 234, 239-250 (1997).
[CrossRef]

Phys. Rev. A

I. Freund, "Antilocalization of light," Phys. Rev. A 37, 1007-1008 (1988).
[CrossRef] [PubMed]

Proc. R. Soc. London A

M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polarization rotating cell providing an exit beam propagating in the same direction as the incident beam.

Fig. 2
Fig. 2

Polarization rotating cell providing an exit beam propagating in the opposite direction to the incident beam.

Fig. 3
Fig. 3

Reflectances R s and R p as a function of the incident angle θ i : (a) pure silica glass, (b) PMMA, (c) polyetherimide, solid curves, red; dashed curves, green, and dotted curves blue, accordingly.

Fig. 4
Fig. 4

Polarizing device.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = 1 + j = 1 3 A j λ 2 λ 2 λ j 2 .

Metrics