Abstract

What we believe to be a new optical element consisting of a single piece isotropic material with three internally reflecting faces for polarization plane rotation by the angle ϕ=π/2 is proposed. The principle of operation is based on the geometrical phase effect, which is different in its origin but produces a similar effect to the circular birefringence. It is shown that the rotator made of polymer as well as silica glasses is not affected by the chromatic dispersion in a visible range.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.
  2. F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
    [CrossRef]
  3. A. R. Chraplyvy, "Polarization flipper for infrared laser beams," Appl. Opt. 15, 2022-2023 (1976).
    [CrossRef] [PubMed]
  4. A. G. Klein, "Novel prism for use in scanning systems," Appl. Opt. 12, 616-617 (1973).
    [CrossRef] [PubMed]
  5. M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
    [CrossRef]
  6. N. I. Petrov, "Evolution of Berry's phase in a graded-index medium," Phys. Lett. A 234, 239-250 (1997).
    [CrossRef]
  7. L. L. Smith and P. M. Koch, "Use of four mirrors to rotate linear polarization but preserve input-output collinearity," J. Opt. Soc. Am. A 13, 2102-2105 (1996).
    [CrossRef]
  8. E. J. Galvez and P. M. Koch, "Use of four mirrors to rotate linear polarization but preserve input-output collinearity. II," J. Opt. Soc. Am. A 14, 3410-3414 (1997).
    [CrossRef]
  9. L. H. Johnston, "Broadband polarization rotator for the infrared," Appl. Opt. 16, 1082-1084 (1977).
    [PubMed]
  10. C. E. Greninger, "Reflective device for polarization rotation," Appl. Opt. 27, 774-776 (1988).
    [CrossRef] [PubMed]
  11. I. Freund, "Antilocalization of light," Phys. Rev. A 37, 1007-1008 (1988).
    [CrossRef] [PubMed]
  12. E. J. Galvez and C. D. Holmes, "Geometric phase of optical rotators," J. Opt. Soc. Am. A 16, 1981-1985 (1999).
    [CrossRef]
  13. N. I. Petrov, "Reflection and transmission of strongly focused vector beams at a dielectric interface," Opt. Lett. 29, 421-423 (2004).
    [CrossRef] [PubMed]
  14. E. J. Galvez, "Achromatic polarization-preserving beam displacer," Opt. Lett. 26, 971-973 (2001).
    [CrossRef]

2004 (1)

2001 (1)

1999 (1)

1997 (2)

1996 (1)

1988 (2)

1984 (1)

M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
[CrossRef]

1977 (1)

1976 (1)

1975 (1)

F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
[CrossRef]

1973 (1)

1959 (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Berry, M. V.

M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Chraplyvy, A. R.

Freund, I.

I. Freund, "Antilocalization of light," Phys. Rev. A 37, 1007-1008 (1988).
[CrossRef] [PubMed]

Galvez, E. J.

Greninger, C. E.

Holmes, C. D.

Johnston, L. H.

Keilmann, F.

F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
[CrossRef]

Klein, A. G.

Koch, P. M.

Petrov, N. I.

Smith, L. L.

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Appl. Opt. (4)

J. Opt. Soc. Am. A (3)

Opt. Commun. (1)

F. Keilmann, "How to flip the polarization of infrared laser beams," Opt. Commun. 14, 236-237 (1975).
[CrossRef]

Opt. Lett. (2)

Phys. Lett. A (1)

N. I. Petrov, "Evolution of Berry's phase in a graded-index medium," Phys. Lett. A 234, 239-250 (1997).
[CrossRef]

Phys. Rev. A (1)

I. Freund, "Antilocalization of light," Phys. Rev. A 37, 1007-1008 (1988).
[CrossRef] [PubMed]

Proc. R. Soc. London A (1)

M. V. Berry, "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. London A 392, 45-57 (1984).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics (Pergamon, 1959), p. 50.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Polarization rotating cell providing an exit beam propagating in the same direction as the incident beam.

Fig. 2
Fig. 2

Polarization rotating cell providing an exit beam propagating in the opposite direction to the incident beam.

Fig. 3
Fig. 3

Reflectances R s and R p as a function of the incident angle θ i : (a) pure silica glass, (b) PMMA, (c) polyetherimide, solid curves, red; dashed curves, green, and dotted curves blue, accordingly.

Fig. 4
Fig. 4

Polarizing device.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ ) = 1 + j = 1 3 A j λ 2 λ 2 λ j 2 .

Metrics