Abstract

A proposal for the multiclad MII optical fiber structure with ultralarge effective area and small bending loss is presented. For the proposed structure small dispersion and dispersion slope are obtained thanks to what we believe to be a novel design method. The suggested design method is based on a weighted fitness function, which is applied to the genetic algorithm optimization technique. In the meantime, the foregoing structure introduces a special fiber whose mode field diameter is small and approximately insensitive to the variation of the effective area. Compared to the work reported previously, our method can precisely set the zero dispersion wavelength. The designed dispersion-shifted single-mode fibers have effective area, mode field diameter, and quality factor respectively within [150194.79]μm2, [6.827.95]μm, and [3.043.85] at λ0=1.55μm. An analytical method is used for the calculation of the dispersion and its slope. These calculations give dispersion and dispersion slope of [(2.57×104)(0.085)] ps∕km∕nm and approximately 0.064ps/km.nm2, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Namihira, "Relationship between nonlinear effective area and mode-diameter for dispersion shifted fiber," Electron. Lett. 30, 262-264 (1994).
    [CrossRef]
  2. H. T. Hattori and A. Safaei-Jazi, "Fiber designs with significantly reduced nonlinearity for very long distance transmission," Appl. Opt. 37, 3190-3197 (1998).
    [CrossRef]
  3. X. Zhang and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 35, 237-244 (2003).
    [CrossRef]
  4. X. Zhang and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 37, 167-172 (2005).
    [CrossRef]
  5. X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
    [CrossRef]
  6. R. lundin, "Dispersion flattening in W fiber," Appl. Opt. 33, 1011-1014 (1994).
    [PubMed]
  7. L. Jie, Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Opt. Commun. 21, 90-93 (2000).
  8. A. Rostami, M. Savadi, and S. Makouei, "A novel fiber design strategy for simultaneously introducing ultra small dispersion and dispersion slope using genetic algorithm" (submitted to J. Lightwave Technol.).
  9. R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
    [CrossRef]
  10. N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.
  11. Y. Li and C. D. Hussey, "Triple-clad single-mode fibers for dispersion flattening," Opt. Eng. 33, 3999-4005 (1994).
    [CrossRef]
  12. M. Savadi and A. Rostami, "A Genetic algorithm based new optical flattened fiber design optimization method for large bandwidth and high-speed optical communications," Opt. Fiber Technol. (to be published).
  13. X. Tian and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Opt. Commun. 230, 105-113 (2004).
    [CrossRef]
  14. Y. W. Li, C. D. Hussey, and T. A. Briks, "Triple-clad single-mode fibers for dispersion shifting," J. Lightwave Technol. 1, 1812-1819 (1993).
    [CrossRef]
  15. A. Rostami and M. Savadi, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Opt. Commun. 271, 413-420 (2007).
    [CrossRef]
  16. M. Hautakorpi and M. Kaivola, "Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation," J. Opt. Soc. Am. A. 22, 1163-1169 (2005).
    [CrossRef]
  17. F. D. Nunes and C. A. de Souza Melo, "Theoretical study of coaxial fibers," Appl. Opt. 35, 388-398 (1996).
    [CrossRef] [PubMed]
  18. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  19. M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 358-389.
  20. J.-i. Sakai and T. Kimura, "Bending loss of propagation in arbitrary-index profile optical fibers," Appl. Opt. 17, 1499-1506 (1978).
    [CrossRef] [PubMed]
  21. A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 2002).
  22. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber-Optics, 3rd ed. (University of New York, 2001).
  24. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1991).
  25. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  26. J.-i. Sakai and T. Kimura, "Splice loss evaluation for optical fibers with arbitrary-index profile," Appl. Opt. 17, 2848-2854 (1978).
    [CrossRef] [PubMed]
  27. J.-i. Sakai and T. Kimura, "Splicing and bending losses of single-mode optical fibers," Appl. Opt. 17, 3653-3659 (1978).
    [CrossRef] [PubMed]
  28. H. R. D. Sunak and S. P. Bastien, "Splice loss in dispersion modified single mode silica fibers: effect of non-Gaussian fields," IEEE Photon. Technol. Lett. 1, 146-148 (1989).
    [CrossRef]
  29. J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd ed. (MIT, 1992).
  30. D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).
  31. W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.
  32. T. Baeck, F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," J. Evol. Comput. 1, 1-24 (1993).
    [CrossRef]
  33. J. R. Koza, Genetic programming: "on the programming of computers by means of natural selection" (MIT, 1992).
  34. T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
    [CrossRef]

2007

A. Rostami and M. Savadi, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Opt. Commun. 271, 413-420 (2007).
[CrossRef]

2005

M. Hautakorpi and M. Kaivola, "Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation," J. Opt. Soc. Am. A. 22, 1163-1169 (2005).
[CrossRef]

X. Zhang and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 37, 167-172 (2005).
[CrossRef]

2004

X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
[CrossRef]

X. Tian and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Opt. Commun. 230, 105-113 (2004).
[CrossRef]

2003

X. Zhang and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 35, 237-244 (2003).
[CrossRef]

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

2002

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 2002).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

2001

G. P. Agrawal, Nonlinear Fiber-Optics, 3rd ed. (University of New York, 2001).

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

2000

L. Jie, Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Opt. Commun. 21, 90-93 (2000).

1998

1996

1994

Y. Namihira, "Relationship between nonlinear effective area and mode-diameter for dispersion shifted fiber," Electron. Lett. 30, 262-264 (1994).
[CrossRef]

R. lundin, "Dispersion flattening in W fiber," Appl. Opt. 33, 1011-1014 (1994).
[PubMed]

Y. Li and C. D. Hussey, "Triple-clad single-mode fibers for dispersion flattening," Opt. Eng. 33, 3999-4005 (1994).
[CrossRef]

1993

W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.

T. Baeck, F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," J. Evol. Comput. 1, 1-24 (1993).
[CrossRef]

Y. W. Li, C. D. Hussey, and T. A. Briks, "Triple-clad single-mode fibers for dispersion shifting," J. Lightwave Technol. 1, 1812-1819 (1993).
[CrossRef]

1992

J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd ed. (MIT, 1992).

J. R. Koza, Genetic programming: "on the programming of computers by means of natural selection" (MIT, 1992).

1991

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1991).

1989

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

H. R. D. Sunak and S. P. Bastien, "Splice loss in dispersion modified single mode silica fibers: effect of non-Gaussian fields," IEEE Photon. Technol. Lett. 1, 146-148 (1989).
[CrossRef]

1988

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

1978

1976

1972

M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 358-389.

Abromowitz, M.

M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 358-389.

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber-Optics, 3rd ed. (University of New York, 2001).

Antony C, S.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Baeck, T.

W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.

T. Baeck, F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," J. Evol. Comput. 1, 1-24 (1993).
[CrossRef]

Bastien, S. P.

H. R. D. Sunak and S. P. Bastien, "Splice loss in dispersion modified single mode silica fibers: effect of non-Gaussian fields," IEEE Photon. Technol. Lett. 1, 146-148 (1989).
[CrossRef]

Bradzil, P.

W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.

Briks, T. A.

Y. W. Li, C. D. Hussey, and T. A. Briks, "Triple-clad single-mode fibers for dispersion shifting," J. Lightwave Technol. 1, 1812-1819 (1993).
[CrossRef]

De Jong, K. A.

W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.

de Souza Melo, C. A.

Fokuada, K.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Fujii, T.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Ghatak, A.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 2002).

Ghatak, A. K.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Goldberg, D. E.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

Goyal, I. C.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Hattori, H. T.

Hautakorpi, M.

M. Hautakorpi and M. Kaivola, "Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation," J. Opt. Soc. Am. A. 22, 1163-1169 (2005).
[CrossRef]

Hirano, M.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Hoffmeister, F.

T. Baeck, F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," J. Evol. Comput. 1, 1-24 (1993).
[CrossRef]

Holland, J. H.

J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd ed. (MIT, 1992).

Hou, S.

X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
[CrossRef]

Hussey, C. D.

Y. Li and C. D. Hussey, "Triple-clad single-mode fibers for dispersion flattening," Opt. Eng. 33, 3999-4005 (1994).
[CrossRef]

Y. W. Li, C. D. Hussey, and T. A. Briks, "Triple-clad single-mode fibers for dispersion shifting," J. Lightwave Technol. 1, 1812-1819 (1993).
[CrossRef]

Jie, L.

L. Jie, Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Opt. Commun. 21, 90-93 (2000).

Kaivola, M.

M. Hautakorpi and M. Kaivola, "Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation," J. Opt. Soc. Am. A. 22, 1163-1169 (2005).
[CrossRef]

Kato, T.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Kimura, T.

Kokura, K.

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

Koza, J. R.

J. R. Koza, Genetic programming: "on the programming of computers by means of natural selection" (MIT, 1992).

Kumano, N.

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

Li, Y.

Y. Li and C. D. Hussey, "Triple-clad single-mode fibers for dispersion flattening," Opt. Eng. 33, 3999-4005 (1994).
[CrossRef]

Li, Y. W.

Y. W. Li, C. D. Hussey, and T. A. Briks, "Triple-clad single-mode fibers for dispersion shifting," J. Lightwave Technol. 1, 1812-1819 (1993).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1991).

lundin, R.

Makouei, S.

A. Rostami, M. Savadi, and S. Makouei, "A novel fiber design strategy for simultaneously introducing ultra small dispersion and dispersion slope using genetic algorithm" (submitted to J. Lightwave Technol.).

Marcuse, D.

Moridaira, H.

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

Mukasa, K.

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

Namihira, Y.

Y. Namihira, "Relationship between nonlinear effective area and mode-diameter for dispersion shifted fiber," Electron. Lett. 30, 262-264 (1994).
[CrossRef]

Nunes, F. D.

Onishi, M.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Ooishi, T.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Peida, Y.

L. Jie, Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Opt. Commun. 21, 90-93 (2000).

Qinan, Q.

L. Jie, Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Opt. Commun. 21, 90-93 (2000).

Rostami, A.

A. Rostami and M. Savadi, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Opt. Commun. 271, 413-420 (2007).
[CrossRef]

A. Rostami, M. Savadi, and S. Makouei, "A novel fiber design strategy for simultaneously introducing ultra small dispersion and dispersion slope using genetic algorithm" (submitted to J. Lightwave Technol.).

M. Savadi and A. Rostami, "A Genetic algorithm based new optical flattened fiber design optimization method for large bandwidth and high-speed optical communications," Opt. Fiber Technol. (to be published).

Safaei-Jazi, A.

Sakai, J.-i.

Sakano, M.

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

Savadi, M.

A. Rostami and M. Savadi, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Opt. Commun. 271, 413-420 (2007).
[CrossRef]

M. Savadi and A. Rostami, "A Genetic algorithm based new optical flattened fiber design optimization method for large bandwidth and high-speed optical communications," Opt. Fiber Technol. (to be published).

A. Rostami, M. Savadi, and S. Makouei, "A novel fiber design strategy for simultaneously introducing ultra small dispersion and dispersion slope using genetic algorithm" (submitted to J. Lightwave Technol.).

Schwefel, H. P.

T. Baeck, F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," J. Evol. Comput. 1, 1-24 (1993).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1991).

Spears, W. M.

W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.

Stegun, I. A.

M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 358-389.

Sunak, H. R. D.

H. R. D. Sunak and S. P. Bastien, "Splice loss in dispersion modified single mode silica fibers: effect of non-Gaussian fields," IEEE Photon. Technol. Lett. 1, 146-148 (1989).
[CrossRef]

Tada, A.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Thyagarajan, K.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 2002).

Tian, X.

X. Tian and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Opt. Commun. 230, 105-113 (2004).
[CrossRef]

X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
[CrossRef]

X. Zhang and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 35, 237-244 (2003).
[CrossRef]

Varshney, R. K.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Wang, X.

X. Zhang and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 37, 167-172 (2005).
[CrossRef]

Xie, L.

X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
[CrossRef]

Yagi, T.

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

Yeh, P.

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

Yokoyama, Y.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Yoshida, M.

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Zhang, X.

X. Zhang and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 37, 167-172 (2005).
[CrossRef]

X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
[CrossRef]

X. Tian and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Opt. Commun. 230, 105-113 (2004).
[CrossRef]

X. Zhang and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 35, 237-244 (2003).
[CrossRef]

Appl. Opt.

Electron. Lett.

Y. Namihira, "Relationship between nonlinear effective area and mode-diameter for dispersion shifted fiber," Electron. Lett. 30, 262-264 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

H. R. D. Sunak and S. P. Bastien, "Splice loss in dispersion modified single mode silica fibers: effect of non-Gaussian fields," IEEE Photon. Technol. Lett. 1, 146-148 (1989).
[CrossRef]

J. Evol. Comput.

T. Baeck, F. Hoffmeister, and H. P. Schwefel, "An overview of evolutionary algorithms for parameter optimization," J. Evol. Comput. 1, 1-24 (1993).
[CrossRef]

J. Lightwave Technol.

Y. W. Li, C. D. Hussey, and T. A. Briks, "Triple-clad single-mode fibers for dispersion shifting," J. Lightwave Technol. 1, 1812-1819 (1993).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A.

M. Hautakorpi and M. Kaivola, "Modal analysis of M-type-dielectric-profile optical fibers in the weakly guiding approximation," J. Opt. Soc. Am. A. 22, 1163-1169 (2005).
[CrossRef]

Opt. Commun.

X. Tian and X. Zhang, "Dispersion-flattened designs of the large effective-area single-mode fibers with ring index profiles," Opt. Commun. 230, 105-113 (2004).
[CrossRef]

A. Rostami and M. Savadi, "Investigation of dispersion characteristic in MI- and MII-type single mode optical fibers," Opt. Commun. 271, 413-420 (2007).
[CrossRef]

L. Jie, Q. Qinan, and Y. Peida, "The relation between the dispersion characteristic of W-profile broad band dispersion compensation fiber and its structural parameters," Opt. Commun. 21, 90-93 (2000).

Opt. Eng.

Y. Li and C. D. Hussey, "Triple-clad single-mode fibers for dispersion flattening," Opt. Eng. 33, 3999-4005 (1994).
[CrossRef]

Opt. Fiber Technol.

M. Savadi and A. Rostami, "A Genetic algorithm based new optical flattened fiber design optimization method for large bandwidth and high-speed optical communications," Opt. Fiber Technol. (to be published).

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and S. Antony C, "Design of a flat field fiber with very small dispersion slope," Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

X. Zhang, L. Xie, X. Tian, and S. Hou, "Chirped Gaussian pulse broadening induced by chromatic dispersion in the triple-clad single-mode fiber with a depressed index inner cladding," Opt. Fiber Technol. 10, 215-231 (2004).
[CrossRef]

T. Kato, M. Hirano, A. Tada, K. Fokuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, "Dispersion flattened transmission line consisting of wide-band non-zero dispersion shifted fiber and dispersion compensating fiber module," Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Opt. Laser Technol.

X. Zhang and X. Tian, "Analysis of waveguide dispersion characteristics of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 35, 237-244 (2003).
[CrossRef]

X. Zhang and X. Wang, "The study of chromatic dispersion and chromatic dispersion slope of WI- and WII-type triple-clad single-mode fibers," Opt. Laser Technol. 37, 167-172 (2005).
[CrossRef]

Other

N. Kumano, K. Mukasa, M. Sakano, H. Moridaira, T. Yagi, and K. Kokura, "Novel NZ-DSF with ultra low dispersion slope lower than 0.02 ps/km/nm2," in Proceeding of the European Conference and Exhibition on Optical Communication (ECOC, 2001), pp. 1-5.

A. Rostami, M. Savadi, and S. Makouei, "A novel fiber design strategy for simultaneously introducing ultra small dispersion and dispersion slope using genetic algorithm" (submitted to J. Lightwave Technol.).

P. Yeh, Optical Waves in Layered Media (Wiley, 1988).

M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 358-389.

J. R. Koza, Genetic programming: "on the programming of computers by means of natural selection" (MIT, 1992).

J. H. Holland, Adaptation in Natural and Artificial Systems, 2nd ed. (MIT, 1992).

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, 1989).

W. M. Spears, K. A. De Jong, T. Baeck, and P. Bradzil, "An overview of evolutionary computation," in Proceedings of European Conference on Machine Learning (Springer-Verlag, 1993), Vol. 667, pp. 442-459.

A. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 2002).

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber-Optics, 3rd ed. (University of New York, 2001).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Index of refraction profile for an MII structure.

Fig. 2
Fig. 2

Dispersion versus wavelength at λ 0 = 1.5 , 1.55 μ m with σ as the parameter.

Fig. 3
Fig. 3

Dispersion slope versus wavelength at λ 0 = 1.5 , 1.55 μ m with σ as the parameter.

Fig. 4
Fig. 4

Normalized field distribution versus the radius of the fiber at λ 0 = 1.5 μ m with σ as the parameter (dashed–dotted, dotted curves, solid line, and dashed curve, represent regions I, II, III, and IV, respectively).

Fig. 5
Fig. 5

Normalized field distribution versus the radius of the fiber at λ 0 = 1.55 μ m with σ as the parameter (dashed–dotted, dotted curves, solid line, and dashed curve represent regions I, II, III, and IV, respectively).

Fig. 6
Fig. 6

Effective area versus wavelength at λ 0 = 1.5 , 1.55 μ m with σ as the parameter.

Fig. 7
Fig. 7

Mode field diameter versus wavelength at λ 0 = 1.5 μ m with σ as the parameter.

Fig. 8
Fig. 8

Mode field diameter versus wavelength at λ 0 = 1.55 μ m with σ as the parameter.

Fig. 9
Fig. 9

Quality factor versus wavelength at λ 0 = 1.5 , 1.55 μ m with σ as the parameter.

Fig. 10
Fig. 10

Dispersion length versus wavelength at λ 0 = 1.5 , 1.55 μ m .

Fig. 11
Fig. 11

Higher-order dispersion length versus wavelength at λ 0 = 1.55 μ m with σ as the parameter.

Fig. 12
Fig. 12

Nonlinear effective length versus wavelength at λ 0 = 1.55 μ m with σ as the parameter.

Fig. 13
Fig. 13

Bending loss (dB∕m) versus bending radius at λ 0 = 1.55 μ m with σ as the parameter.

Fig. 14
Fig. 14

Bending loss (dB∕m) versus bending radius at λ 0 = 1.5 μ m with σ as the parameter.

Fig. 15
Fig. 15

Splice loss (dB) versus core tilt misalignment at λ 0 = 1.55 μ m with σ as the parameter.

Fig. 16
Fig. 16

Splice loss (dB) versus core tilt misalignment at λ 0 = 1.5 μ m with σ as the parameter.

Fig. 17
Fig. 17

Splice loss (dB) versus core separation at λ 0 = 1.55 μ m with σ as the parameter.

Fig. 18
Fig. 18

Splice loss (dB) versus core separation at λ 0 = 1.5 μ m with σ as the parameter.

Tables (3)

Tables Icon

Table 1 Optimization Search Space of Optical and Geometrical Parameters

Tables Icon

Table 2 Optimized Optical and Geometrical Parameters at λ0 = 1.5, 1.55 μm and Three Given Gaussian Parameters

Tables Icon

Table 3 Dispersion, Dispersion Slope, Effective Area, Mode Field Diameter, and Quality Factor at λ0 = 1.5, 1.55 μm and Three Given Gaussian Parameters

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

U 1 = a ( k 0 2 n 1 2 β 2 ) 1 / 2 ,   W 1 = a ( β 2 k 0 2 n 1 2 ) 1 / 2 ,
U 2 = a ( k 0 2 n 2 2 β 2 ) 1 / 2 ,   W 2 = a ( β 2 k 0 2 n 2 2 ) 1 / 2 ,
U 3 = b ( k 0 2 n 3 2 β 2 ) 1 / 2 ,   W 4 = c ( β 2 k 0 2 n 4 2 ) 1 / 2 ,
P = b c ,   Q = a c ,
R 1 = n 3 n 1 n 3 n 2 ,   R 2 = n 2 n 4 n 3 n 2 ,
Δ = n 3 2 n 4 2 2 n 4 2 n 3 n 4 n 4 .
D = λ c d 2 n 4 d λ 2 [ 1 + Δ d ( V B ) d V ] N 4 c Δ λ V d 2 ( V B ) d V 2 ,
S = λ c d 3 n 4 d λ 3 [ 1 + Δ d ( V B ) d V ] 1 c d 2 n 4 d λ 2 [ 1 + Δ d ( V B ) d V ] + N 4 c ( Δ λ 2 ) V 2 d 3 ( V B ) d V 3 + 2 N 4 c Δ λ 2 V d 2 ( V B ) d V 2 + 2 Δ c d 2 n 4 d λ 2 V d 2 ( V B ) d V 2 ,
V = k 0 b ( n 3 2 n 4 2 ) 1 / 2 ,   B = ( β / k 0 ) 2 n 4 2 n 3 2 n 4 2 = 1 ( U 3 V ) 2 .
d ( V B ) d V = 1 + ( U 3 V ) 2 [ 1 2 ( V U 3 ) d U 3 d V ] ,
V d 2 ( V B ) d V 2 = 2 ( d U 3 d V U 3 V ) 2 2 U 3 d 2 U 3 d V 2 ,
V 2 d 3 ( V B ) d V 3 = 6 ( d U 3 d V U 3 V ) 2 2 U 3 V d 3 U 3 d V 3 6 V d 2 U 3 d V 2 ( d U 3 d V U 3 V ) .
A e f f = 2 π [ 0 | ψ ( r ) | 2 r d r ] 2 0 | ψ ( r ) | 4 r d r ,
d 0 2 = 8 0 | ψ ( r ) | 2 r d r 0 | d ψ ( r ) d r | 2 r d r ,
Q f = A e f f d 0 2 ,
2 α = π A 4 2 2 s W c   exp ( 4 Δ W 4 3 3 c V 2 R ) W 4 ( W 4 R c + V 2 2 Δ W 4 ) 1 / 2 ,
s = { 2 , v = 0 1 , v 0.
W i = [ A i 2 r 2 2 ( J v 2 J v 1 J v + 1 ) + B i 2 r 2 2 ( Y v 2 Y v 1 Y v + 1 ) + A i B i r 2 ( J v Y v J v 1 Y v + 1 ) ] a i a i + 1 ,
W i = [ A i 2 r 2 2 ( K v 2 K v 1 K v + 1 ) + B i 2 r 2 2 ( I v 2 I v 1 I v + 1 ) + A i B i r 2 ( K v I v K v 1 I v + 1 ) ] a i a i + 1 .
η 0 0 = P r P s = | S [ E s × H r * ] e ^ z d S | 2 S ( E s × H s * ) e ^ z d S S ( E r × H r * ) e ^ z d S ,
η = ( 0 2 π 0 E ( r ) E ( r + ) r d r d θ 2 π 0 E 2 ( r ) r d r ) 2 ,
η = ( 0 2 π 0 E ( r ) E ( r θ ) cos ( φ β r   sin   θ ) r d r d θ 2 π 0 E 2 ( r ) r d r ) 2 ,
F = λ exp ( ( λ λ 0 ) 2 2 σ 2 ) Z [ 1 + ( β 2 ( λ ) Z t i 2 ) 2 + ( β 3 ( λ ) Z 2 t i 3 ) 2 ] 1 / 2 ,
β 2 = d 2 d ω 2 β ( ω ) | ω = ω c ,
β 3 = d 3 d ω 3 β ( ω ) | ω = ω c = ( S 4 π c λ 3 β 2 ) λ 4 ( 2 π c ) 2 .

Metrics