Abstract

We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid- and long-wave infrared for a variety of chemically and biologically based aerosols. For this study we consider only chemically derived aerosols, and in particular, a group of chemical compounds often used as simulants for the detection of extremely toxic organophosphorus nerve agents. These materials include: diethyl methylphosphonate (DEMP), dimethyl methylphosphonate (DMMP), diisopropyl methylphosphonate (DIMP), and diethyl phthalate (DEP). As reported in a prior study [Appl. Opt. 44, 4001 (2005)], we combine two optical techniques well suited for aerosol spectroscopy [i.e., flow-through photoacoustics and Fourier transform infrared (FTIR) emission spectroscopy], to measure in situ the absolute extinction and absorption cross sections over a variety of wavelengths spanning the IR spectral region from 3 to 13μm. Aerosol size distribution(s), particle number density, and dosimetric measurements are recorded simultaneously in order to present optical cross sections that are aerosol mass normalized, i.e., m2/gram. Photoacoustic results, conducted at a series of CO2 laser lines, compare well with measured broadband FTIR spectral extinction. Both FTIR and photoacoustic data also compare well with Mie theory calculations based on measured size distributions and previously published complex indices of refraction.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ben-David, "Backscatter measurements of the atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species," Appl. Opt. 38, 2616-2624 (1999).
    [CrossRef]
  2. G. J. Koch, B. W. Barnes, M. Petros, and J. Y. Beyon, "Coherent differential absorption lidar measurements of CO2," Appl. Opt. 43, 5092-5099 (2004).
    [CrossRef] [PubMed]
  3. R. Vanderbeek and K. Gurton, "Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar," Proc. SPIE 5268, 184-193 (2004).
    [CrossRef]
  4. K. P. Gurton, R. Dahmani, and D. Ligon, "Measured IR optical cross sections for a variety of chemical and biological aerosol simulants," Appl. Opt. 43, 4564-4570 (2004).
    [CrossRef] [PubMed]
  5. K. P. Gurton, D. Ligon, and R. Kvavilashvili, "Measured infrared spectral extinction for aerosolized Bacillus subtilis var. niger endospores from 3 to 13 μm," Appl. Opt. 40, 4443-4448 (2001).
    [CrossRef]
  6. J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
    [CrossRef]
  7. G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, "Mid-infrared external-cavity quantum-cascade laser," Opt. Lett. 27, 1788-1794 (2002).
    [CrossRef]
  8. J. P. Carrico, "The DOD chemical-biological stand-off detection program: a revisit nearly ten year later," Third Workshop on Stand-off Detection for Chemical and Biological Defense, Williamsburg, Va. 17-21, Oct. (1994).
  9. D. F. Flanigan, The Spectral Signatures of Chemical Agent Vapors and Aerosols, Tech. Rep. CRDC-TR-85002 (U.S. Army Chemical Research and Development Center, 1985).
  10. D. F. Flanigan, "Hazardous cloud imaging: a new way of using passive infrared," Appl. Opt. 36, 7027-7036 (1997).
    [CrossRef]
  11. M. R. Querry, "Optical constants of minerals and other materials from the millimeter to the ultraviolet," Tech. Rep. CRDEC-CR88009 (Chemical Research, Development, and Engineering Center, 1987).
  12. H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).
  13. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
    [CrossRef] [PubMed]
  14. D. Helm and D. Naumann, "Identification of some bacterial cell components by FTIR spectroscopy," FEMS Microbiol. Lett. 126, 75-80 (1995).
  15. K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
    [CrossRef]
  16. K. P. Gurton, D. Ligon, and R. Dahmani, "In situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols," Tech. Rep. ARL-TR-3071 (ARL, 2003).
  17. K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).
  18. Y. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).
  19. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).
  20. C. W. Bruce and R. G. Pinnick, "In situ measurements of aerosol absorption with a resonate cw laser spectrophone," Appl. Opt. 16, 1762-1765 (1977).
    [CrossRef] [PubMed]
  21. C. W. Bruce and N. M. Richardson, "Propagation at 10 μm through smoke produced by atmospheric combustion of diesel fuel," Appl. Opt. 22, 1051-1056 (1983).
    [CrossRef] [PubMed]
  22. C. W. Bruce, T. F. Stromberg, and K. P. Gurton, "Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot," Appl. Opt. 30, 1537-1546 (1991).
    [CrossRef] [PubMed]
  23. A. Deepak and M. Box, "Forwardscattering corrections for optical extinction measurements in aerosol media. 2: Polydispersions," Appl. Opt. 17, 3169-3176 (1978).
    [CrossRef] [PubMed]
  24. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1986).

2005 (1)

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
[CrossRef]

2004 (4)

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).

R. Vanderbeek and K. Gurton, "Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar," Proc. SPIE 5268, 184-193 (2004).
[CrossRef]

K. P. Gurton, R. Dahmani, and D. Ligon, "Measured IR optical cross sections for a variety of chemical and biological aerosol simulants," Appl. Opt. 43, 4564-4570 (2004).
[CrossRef] [PubMed]

G. J. Koch, B. W. Barnes, M. Petros, and J. Y. Beyon, "Coherent differential absorption lidar measurements of CO2," Appl. Opt. 43, 5092-5099 (2004).
[CrossRef] [PubMed]

2003 (1)

K. P. Gurton, D. Ligon, and R. Dahmani, "In situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols," Tech. Rep. ARL-TR-3071 (ARL, 2003).

2002 (1)

2001 (1)

1999 (1)

1997 (2)

D. F. Flanigan, "Hazardous cloud imaging: a new way of using passive infrared," Appl. Opt. 36, 7027-7036 (1997).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

1996 (2)

H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

1995 (1)

D. Helm and D. Naumann, "Identification of some bacterial cell components by FTIR spectroscopy," FEMS Microbiol. Lett. 126, 75-80 (1995).

1994 (1)

J. P. Carrico, "The DOD chemical-biological stand-off detection program: a revisit nearly ten year later," Third Workshop on Stand-off Detection for Chemical and Biological Defense, Williamsburg, Va. 17-21, Oct. (1994).

1991 (1)

1987 (1)

M. R. Querry, "Optical constants of minerals and other materials from the millimeter to the ultraviolet," Tech. Rep. CRDEC-CR88009 (Chemical Research, Development, and Engineering Center, 1987).

1986 (1)

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1986).

1985 (1)

D. F. Flanigan, The Spectral Signatures of Chemical Agent Vapors and Aerosols, Tech. Rep. CRDC-TR-85002 (U.S. Army Chemical Research and Development Center, 1985).

1983 (1)

1980 (1)

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

1978 (1)

1977 (2)

Arakawa, E. T.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

Baillargeon, J.

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Barnes, B. W.

Ben-David, A.

Beyon, J. Y.

Box, M.

Bronk, B.

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
[CrossRef]

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).

Bruce, C. W.

Capasso, F.

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Carrico, J. P.

J. P. Carrico, "The DOD chemical-biological stand-off detection program: a revisit nearly ten year later," Third Workshop on Stand-off Detection for Chemical and Biological Defense, Williamsburg, Va. 17-21, Oct. (1994).

Carslaw, H. S.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1986).

Chapman, D.

H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).

Cho, A.

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Chu, S.

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Dahmani, R.

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
[CrossRef]

K. P. Gurton, R. Dahmani, and D. Ligon, "Measured IR optical cross sections for a variety of chemical and biological aerosol simulants," Appl. Opt. 43, 4564-4570 (2004).
[CrossRef] [PubMed]

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).

K. P. Gurton, D. Ligon, and R. Dahmani, "In situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols," Tech. Rep. ARL-TR-3071 (ARL, 2003).

Deepak, A.

Faist, J.

G. Totschnig, F. Winter, V. Pustogov, J. Faist, and A. Müller, "Mid-infrared external-cavity quantum-cascade laser," Opt. Lett. 27, 1788-1794 (2002).
[CrossRef]

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Flanigan, D. F.

D. F. Flanigan, "Hazardous cloud imaging: a new way of using passive infrared," Appl. Opt. 36, 7027-7036 (1997).
[CrossRef]

D. F. Flanigan, The Spectral Signatures of Chemical Agent Vapors and Aerosols, Tech. Rep. CRDC-TR-85002 (U.S. Army Chemical Research and Development Center, 1985).

Gurton, K.

R. Vanderbeek and K. Gurton, "Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar," Proc. SPIE 5268, 184-193 (2004).
[CrossRef]

Gurton, K. P.

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
[CrossRef]

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).

K. P. Gurton, R. Dahmani, and D. Ligon, "Measured IR optical cross sections for a variety of chemical and biological aerosol simulants," Appl. Opt. 43, 4564-4570 (2004).
[CrossRef] [PubMed]

K. P. Gurton, D. Ligon, and R. Dahmani, "In situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols," Tech. Rep. ARL-TR-3071 (ARL, 2003).

K. P. Gurton, D. Ligon, and R. Kvavilashvili, "Measured infrared spectral extinction for aerosolized Bacillus subtilis var. niger endospores from 3 to 13 μm," Appl. Opt. 40, 4443-4448 (2001).
[CrossRef]

C. W. Bruce, T. F. Stromberg, and K. P. Gurton, "Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot," Appl. Opt. 30, 1537-1546 (1991).
[CrossRef] [PubMed]

Helm, D.

D. Helm and D. Naumann, "Identification of some bacterial cell components by FTIR spectroscopy," FEMS Microbiol. Lett. 126, 75-80 (1995).

Hutchinson, A. L.

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Jaeger, J. C.

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1986).

Khare, B. N.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

Koch, G. J.

Kvavilashvili, R.

Ligon, D.

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
[CrossRef]

K. P. Gurton, R. Dahmani, and D. Ligon, "Measured IR optical cross sections for a variety of chemical and biological aerosol simulants," Appl. Opt. 43, 4564-4570 (2004).
[CrossRef] [PubMed]

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).

K. P. Gurton, D. Ligon, and R. Dahmani, "In situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols," Tech. Rep. ARL-TR-3071 (ARL, 2003).

K. P. Gurton, D. Ligon, and R. Kvavilashvili, "Measured infrared spectral extinction for aerosolized Bacillus subtilis var. niger endospores from 3 to 13 μm," Appl. Opt. 40, 4443-4448 (2001).
[CrossRef]

Mantsch, H. H.

H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).

Milham, M. E.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

Müller, A.

Naumann, D.

D. Helm and D. Naumann, "Identification of some bacterial cell components by FTIR spectroscopy," FEMS Microbiol. Lett. 126, 75-80 (1995).

Pao, Y.

Y. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).

Petros, M.

Pinnick, R. G.

Pustogov, V.

Querry, M. R.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

M. R. Querry, "Optical constants of minerals and other materials from the millimeter to the ultraviolet," Tech. Rep. CRDEC-CR88009 (Chemical Research, Development, and Engineering Center, 1987).

Richardson, N. M.

Rosencwaig, A.

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

Sirtori, C.

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

Stromberg, T. F.

Totschnig, G.

Tuminello, P. S.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

Vanderbeek, R.

R. Vanderbeek and K. Gurton, "Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar," Proc. SPIE 5268, 184-193 (2004).
[CrossRef]

Winter, F.

Wrobel, J. M.

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

Appl. Opt. (11)

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "In situ measurement of the optical absorption and extinction for chemical and biologically derived aerosols using flow- through photoacoustics," Appl. Opt. 44, 4001-4006 (2005).
[CrossRef]

A. Deepak and M. Box, "Forwardscattering corrections for optical extinction measurements in aerosol media. 2: Polydispersions," Appl. Opt. 17, 3169-3176 (1978).
[CrossRef] [PubMed]

C. W. Bruce and N. M. Richardson, "Propagation at 10 μm through smoke produced by atmospheric combustion of diesel fuel," Appl. Opt. 22, 1051-1056 (1983).
[CrossRef] [PubMed]

C. W. Bruce, T. F. Stromberg, and K. P. Gurton, "Trans-spectral absorption and scattering of electromagnetic radiation by diesel soot," Appl. Opt. 30, 1537-1546 (1991).
[CrossRef] [PubMed]

D. F. Flanigan, "Hazardous cloud imaging: a new way of using passive infrared," Appl. Opt. 36, 7027-7036 (1997).
[CrossRef]

A. Ben-David, "Backscatter measurements of the atmospheric aerosols at CO2 laser wavelengths: implications of aerosol spectral structure on differential-absorption lidar retrievals of molecular species," Appl. Opt. 38, 2616-2624 (1999).
[CrossRef]

K. P. Gurton, D. Ligon, and R. Kvavilashvili, "Measured infrared spectral extinction for aerosolized Bacillus subtilis var. niger endospores from 3 to 13 μm," Appl. Opt. 40, 4443-4448 (2001).
[CrossRef]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 µm," Appl. Opt. 36, (1997).
[CrossRef] [PubMed]

K. P. Gurton, R. Dahmani, and D. Ligon, "Measured IR optical cross sections for a variety of chemical and biological aerosol simulants," Appl. Opt. 43, 4564-4570 (2004).
[CrossRef] [PubMed]

G. J. Koch, B. W. Barnes, M. Petros, and J. Y. Beyon, "Coherent differential absorption lidar measurements of CO2," Appl. Opt. 43, 5092-5099 (2004).
[CrossRef] [PubMed]

C. W. Bruce and R. G. Pinnick, "In situ measurements of aerosol absorption with a resonate cw laser spectrophone," Appl. Opt. 16, 1762-1765 (1977).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Faist, F. Capasso, C. Sirtori, J. Baillargeon, A. L. Hutchinson, S. Chu, and A. Cho, "Quantum design of QC-laser," Appl. Phys. Lett. 68, 3680-3682 (1996).
[CrossRef]

FEMS Microbiol. Lett. (1)

D. Helm and D. Naumann, "Identification of some bacterial cell components by FTIR spectroscopy," FEMS Microbiol. Lett. 126, 75-80 (1995).

Opt. Lett. (1)

Proc. SPIE (1)

R. Vanderbeek and K. Gurton, "Backscatter measurements of aerosolized CB simulants with a frequency agile CO2 lidar," Proc. SPIE 5268, 184-193 (2004).
[CrossRef]

Other (9)

J. P. Carrico, "The DOD chemical-biological stand-off detection program: a revisit nearly ten year later," Third Workshop on Stand-off Detection for Chemical and Biological Defense, Williamsburg, Va. 17-21, Oct. (1994).

D. F. Flanigan, The Spectral Signatures of Chemical Agent Vapors and Aerosols, Tech. Rep. CRDC-TR-85002 (U.S. Army Chemical Research and Development Center, 1985).

M. R. Querry, "Optical constants of minerals and other materials from the millimeter to the ultraviolet," Tech. Rep. CRDEC-CR88009 (Chemical Research, Development, and Engineering Center, 1987).

H. H. Mantsch and D. Chapman, Infrared Spectroscopy of Biomolecules (Wiley-Liss, 1996).

K. P. Gurton, D. Ligon, and R. Dahmani, "In situ Measurement of the Infrared Spectral Extinction for Various Chemical, Biological, and Background Aerosols," Tech. Rep. ARL-TR-3071 (ARL, 2003).

K. P. Gurton, R. Dahmani, D. Ligon, and B. Bronk, "Measured IR absorption and extinction cross sections for a variety of chemically and biologically derived aerosol simulants," Tech. Rep. ARL-TR-3253 (Army Research Laboratory, 2004).

Y. Pao, Optoacoustic Spectroscopy and Detection (Academic, 1977).

A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, 1980).

H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) Schematic of FTIR∕photoacoustic experiment used to measure in situ the spectral extinction and absorption cross sections.

Fig. 2
Fig. 2

(Color online) Typical size distribution for the aerosolized chemical simulant.

Fig. 3
Fig. 3

(Color online) Measured FTIR (solid curve) and photoacoustic (data points) derived mass-normalized extinction and absorption cross-sections for DMMP. Also shown are the corresponding Mie theory calculations for the spectral extinction and absorption (dashed curves) based on the size distribution shown in Fig. 2 and previously published indices of refraction [11].

Fig. 4
Fig. 4

Measured mass-normalized FTIR spectral extinction (solid curve) from 3 to 1 3 μ m for DMMP. Also shown are the corresponding Mie theory calculations (dashed curves) for the spectral extinction, absorption, total scatter, and backscatter based on the size distribution shown in Fig. 2 and previously published indices of refraction [11].

Fig. 5
Fig. 5

(Color online) Measured FTIR (solid curve) and photoacoustic (data points) derived mass-normalized extinction and absorption cross sections for DIMP. Also shown are the corresponding Mie theory calculations for the spectral extinction and absorption (dashed curve) based on the size distribution shown in Fig. 2 and previously published indices of refraction [11].

Fig. 6
Fig. 6

Measured mass-normalized FTIR spectral extinction (solid curve) from 3 to 1 3 μ m for DIMP. Also shown are the corresponding Mie theory calculations (dashed curves) for the spectral extinction, absorption, total scatter, and backscatter based on the size distribution shown in Fig. 2 and previously published indices of refraction [11].

Fig. 7
Fig. 7

(Color online) Measured FTIR (solid curve) and photoacoustic (data points) derived mass-normalized extinction and absorption cross-sections for DEP. Also shown are the corresponding Mie theory calculations for the spectral extinction and absorption (dashed curves) based on the size distribution shown in Fig. 2 and previously published indices of refraction [11].

Fig. 8
Fig. 8

Measured mass-normalized FTIR spectral extinction (solid curve) from 3 to 1 3 μ m for DEP. Also shown are the corresponding Mie theory calculations (dashed curves) for the spectral extinction, absorption, total scatter, and backscatter based on the size distribution shown in Fig. 2 and previously published indices of refraction [11].

Fig. 9
Fig. 9

(Color online) Measured FTIR (solid curve) and photoacoustic (data points) derived mass-normalized extinction and absorption cross-sections for DEMP. Representative size distribution for the FTIR measurement can be seen in Fig. 2. Because no complex indices of refraction were available, no corresponding Mie theory calculations were conducted for DEMP.

Fig. 10
Fig. 10

Schematic of thermal condition necessary for “gaseous equivalence.”

Fig. 11
Fig. 11

(Color online) Fourier heat conduction calculations defining maximum modulation frequencies versus particle radius for water and glycerol spheres.

Metrics