Abstract

We have performed calculations and measurements of the efficacy of two poling geometries of poled electro-optic (EO) polymer films for use in sensing terahertz (THz) radiation via EO sampling. Taking reflective and absorptive losses into consideration, we find that a parallel-plate (PP) poled film has a sensitivity maximum when oriented at 55° to the incident probe and THz beams. In addition, we show that our in-plane (IP) poled polymer films are comparable in sensitivity to PP-poled films and discuss the potential for improving IP-poled polymer devices.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005).
    [CrossRef]
  2. X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
    [CrossRef]
  3. A. Schneider, M. Neis, M. Stillhart, B. Rutz, R. U. A. Khan, and P. Gunter, "Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment," J. Opt. Soc. Am. B 23, 1822-1835 (2006).
    [CrossRef]
  4. M. van Exter, C. Fattinger, and D. Grischkowsky, "Terahertz time-domain spectroscopy of water vapor," Opt. Lett. 14, 1128-1130 (1989).
    [CrossRef]
  5. Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
    [CrossRef]
  6. H. Cao, T. F. Heinz, and A. Nahata, "Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers," Opt. Lett. 27, 775-777 (2002).
    [CrossRef]
  7. A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
    [CrossRef]
  8. X. Zheng, C. V. McLaughlin, M. R. Leahy-Hoppa, A. M. Sinyukov, and L. M. Hayden, "Modeling a broadband terahertz system based on an electro-optic polymer emitter sensor pair," J. Opt. Soc. Am. B 23, 1338-1347 (2006).
    [CrossRef]
  9. T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
    [CrossRef]
  10. N. C. J. van der Valk, T. Wenckenbach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004).
    [CrossRef]
  11. P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).
  12. K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986).
    [CrossRef]
  13. A. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996).
    [CrossRef]
  14. FEMLAB 2006, COMSOL AB, Stockholm, Sweden, http://www.comsol.com.
  15. M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
    [CrossRef]
  16. L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
    [CrossRef]

2006 (3)

2005 (1)

X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005).
[CrossRef]

2004 (2)

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

N. C. J. van der Valk, T. Wenckenbach, and P. C. M. Planken, "Full mathematical description of electro-optic detection in optically isotropic crystals," J. Opt. Soc. Am. B 21, 622-631 (2004).
[CrossRef]

2002 (2)

2001 (1)

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

1996 (2)

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
[CrossRef]

A. Sandalphon, B. Kippelen, K. Meerholz, and N. Peyghambarian, "Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites," Appl. Opt. 35, 2346-2354 (1996).
[CrossRef]

1993 (1)

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

1991 (1)

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

1989 (1)

1986 (1)

K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986).
[CrossRef]

Auston, D. H.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
[CrossRef]

Baker, C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Beere, H. E.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Burland, D. M.

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

Cao, H.

Davies, A. G.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Evans, M. J.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Fattinger, C.

French, J.

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Gregory, I. S.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Grischkowsky, D.

Gunter, P.

Hau, S.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Hayden, L. M.

X. Zheng, C. V. McLaughlin, M. R. Leahy-Hoppa, A. M. Sinyukov, and L. M. Hayden, "Modeling a broadband terahertz system based on an electro-optic polymer emitter sensor pair," J. Opt. Soc. Am. B 23, 1338-1347 (2006).
[CrossRef]

X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005).
[CrossRef]

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

He, M.

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Heinz, T. F.

H. Cao, T. F. Heinz, and A. Nahata, "Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers," Opt. Lett. 27, 775-777 (2002).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
[CrossRef]

Herman, W. N.

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Jang, S.-H.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Jen, A. K.-Y.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Ka, J.-W.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Kang, J.-W.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Khan, R. U. A.

Kim, T.-D.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Kippelen, B.

Lalama, S. J.

K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986).
[CrossRef]

Leahy, M. R.

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Leahy-Hoppa, M. R.

Lindahl, P.

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Linfield, E. H.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Luo, J.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

McLaughlin, C. V.

Meerholz, K.

Miller, R. D.

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

Nahata, A.

H. Cao, T. F. Heinz, and A. Nahata, "Electro-optic detection of femtosecond electromagnetic pulses by use of poled polymers," Opt. Lett. 27, 775-777 (2002).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
[CrossRef]

Neis, M.

Peyghambarian, N.

Planken, P. C. M.

Prasad, P. N.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

Rutz, B.

Sandalphon, A.

Schneider, A.

Shen, Y. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Shi, Z.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Singer, K. D.

K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986).
[CrossRef]

Sinyukov, A.

X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005).
[CrossRef]

Sinyukov, A. M.

X. Zheng, C. V. McLaughlin, M. R. Leahy-Hoppa, A. M. Sinyukov, and L. M. Hayden, "Modeling a broadband terahertz system based on an electro-optic polymer emitter sensor pair," J. Opt. Soc. Am. B 23, 1338-1347 (2006).
[CrossRef]

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Sohn, J. E.

K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986).
[CrossRef]

Stahelin, M.

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

Stillhart, M.

Tian, Y.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Tribe, W. R.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

Tucker, N. M.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Twieg, R. J.

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

Upadhya, P. C.

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

van der Valk, N. C. J.

van Exter, M.

Volksen, W.

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

Walsh, C. A.

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

Wenckenbach, T.

Williams, D. J.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

Wu, C.

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
[CrossRef]

Zhang, X. C.

X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Zheng, X.

X. Zheng, C. V. McLaughlin, M. R. Leahy-Hoppa, A. M. Sinyukov, and L. M. Hayden, "Modeling a broadband terahertz system based on an electro-optic polymer emitter sensor pair," J. Opt. Soc. Am. B 23, 1338-1347 (2006).
[CrossRef]

X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005).
[CrossRef]

Adv. Mater. (1)

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

K. D. Singer, J. E. Sohn, and S. J. Lalama, "Second harmonic generation in poled polymer films," Appl. Phys. Lett. 49, 248-250 (1986).
[CrossRef]

X. Zheng, A. Sinyukov, and L. M. Hayden, "Broadband and gap-free response of a terahertz system based on a poled polymer emitter-sensor pair," Appl. Phys. Lett. 87, 081115 (2005).
[CrossRef]

Y. C. Shen, P. C. Upadhya, H. E. Beere, E. H. Linfield, A. G. Davies, I. S. Gregory, C. Baker, W. R. Tribe, and M. J. Evans, "Generation and detection of ultrabroadband terahertz radiation using photoconductive emitters and receivers," Appl. Phys. Lett. 85, 164-166 (2004).
[CrossRef]

A. Nahata, D. H. Auston, T. F. Heinz, and C. Wu, "Coherent detection of freely propagating terahertz radiation by electro-optic sampling," Appl. Phys. Lett. 68, 150-152 (1996).
[CrossRef]

J. Appl. Phys. (1)

M. Stahelin, C. A. Walsh, D. M. Burland, R. D. Miller, R. J. Twieg, and W. Volksen, "Orientational decay in poled second-order nonlinear optical guest-host polymers: temperature dependence and the effects of poling geometry," J. Appl. Phys. 73, 8471-8479 (1993).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Polym. Sci. Part B Polym. Phys. (1)

L. M. Hayden, A. M. Sinyukov, M. R. Leahy, J. French, P. Lindahl, W. N. Herman, R. J. Twieg, and M. He, "New materials for optical rectification and electrooptic sampling of ultrashort pulses in the terahertz regime," J. Polym. Sci. Part B Polym. Phys. 41, 2492-2500 (2001).
[CrossRef]

Nature Materials (1)

X. C. Zhang, "Materials for terahertz science and technology," Nature Materials 1, 26-33 (2002).
[CrossRef]

Opt. Lett. (2)

Other (2)

FEMLAB 2006, COMSOL AB, Stockholm, Sweden, http://www.comsol.com.

P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (Wiley, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(Color online) Schematic of the PP-poled polymer THz sensor. (a) The probe beam is polarized at 45° to the THz beam and (b) both are incident at an angle, θ, and (c) copropagate through the polymer at an angle, ψ. The poling direction is the z axis. The principle axes are rotated by ϕ about the y axis in the presence of the THz electric field.

Fig. 2
Fig. 2

(Color online) (a) Detection sensitivity due to THz-induced retardation for the PP-poled EO polymer THz sensor as a function of sensor incident angle, θ. (b) Inclusion of THz loss due to Fresnel reflection produces a maximum sensitivity at an incident angle of 60°. (c) Accounting for optical probe absorption in the polymer and reflective losses at the air–polymer and polymer–air boundaries further attenuates the sensitivity and brings the optimal sensing angle to 55°.

Fig. 3
Fig. 3

(Color online) (a) Top and (b) side views of the IP-poling device. The poling electrodes are 3 μ m thick and are separated by a 100 μ m gap. The arrows within the electrode gap in (a) and (b) denote the poling field. (c) Measurement of the EO coefficient in an IP sample utilizes a modified transmission-geometry setup.

Fig. 4
Fig. 4

(Color online) Simulation of the poling field through a 90 μ m thick polymer in an IP device. This is a model of 7   kV applied to 3 μ m thick electrodes with a 100 μ m wide gap on a fused-silica substrate. The extremely high fields surrounding the electrodes limit the poling efficiency through the rest of the polymer. The average field ( E e f f ) in this simulation is 36.5 V / μ m .

Fig. 5
Fig. 5

Schematic of the THz setup. A pellicle beam splitter splits the probe and pump beams. The pump generates THz in an EO crystal or poled polymer film. The half-wave plate is used to rotate the probe beam polarization 45° with respect to the THz polarization. Both the THz and probe are focused onto the polymer sensor and a balanced detection scheme records the THz electric field.

Fig. 6
Fig. 6

(Color online) The amplitude fits above use the full expression for angle-dependent THz sensing of a PP-poled EO polymer [Eq. (16)]. The two frequencies reported were simultaneously retrieved from Fourier-transformed THz electric field traces.

Fig. 7
Fig. 7

(Color online) THz amplitude spectrum from IP (solid curves) and PP (dotted curves) polymer sensors. The PP-poled sensor was placed at an angle of θ = 60 ° . Upper inset, comparison of the measured and theoretical ratio ( S I P / S P P ) of the THz amplitudes for the two sensor geometries. Lower inset, THz electric field traces for the two EO polymer sensor poling geometries.

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

Δ ( l p l s ) = d P P cos   ψ ( Δ n p Δ n s ) ,
E x T H z = E T H z   cos   ψ T H z ,
E y T H z = 0 ,
E z T H z = E T H z   sin   ψ T H z ,
r I k = ( 0 0 r 13 0 0 r 13 0 0 r 33 0 r 51 0 r 51 0 0 0 0 0 ) .
( 1 n o 2 + r 13 E z T H z ) x 2 + ( 1 n o 2 + r 13 E z T H z ) y 2 + ( 1 n e 2 + r 33 E z T H z ) z 2 + ( 2 r 51 E x T H z ) x z = 1.
x = x   cos   ϕ z   sin   ϕ ,
y = y ,
z = x   sin   ϕ + z   cos   ϕ .
tan   2 ϕ = 2 r 51 E x T H z ( 1 / n o 2 + r 13 E z T H z ) ( 1 / n e 2 + r 33 E z T H z ) .
tan   2 ϕ = E x T H z E z T H z = cos   ψ T H z sin   ψ T H z .
1 n x 2 = 1 n 2 + r 33 E z T H z 3 + 2 r 33 E z T H z sin 2 ϕ 3 + 2 r 33 E x T H z   sin   ϕ   cos   ϕ 3 ,
1 n y 2 = 1 n 2 + r 33 E z T H z 3 ,
1 n z 2 = 1 n 2 + r 33 E z T H z 3 + 2 r 33 E z T H z cos 2 ϕ 3 2 r 33 E x T H z   sin   ϕ   cos   ϕ 3 .
1 ( n p ) 2 = sin 2 ( ϕ ψ ) n z 2 + cos 2 ( ϕ ψ ) n x 2 ,
Δ n p = n 3 r 33 6 { [ 1 + 2 sin 2 ψ + sin   2 ϕ   sin ( 2 ϕ 2 ψ ) ] E z + sin   2 ϕ   cos ( 2 ϕ 2 ψ ) E x } .
Δ ( l p l s ) = d P P n 3 r 33 3 E T H z sin   θ n 2 sin 2 θ .
S ( θ ) Δ ( l p l s ) F T H z ( θ ) ,
F T H z ( θ ) = 2 n a i r   cos   θ n a i r   cos   ψ T H z + n T H z   cos   θ .
F O p t ( θ ) = T ( θ ) exp ( n d P P α n 2 sin 2 θ ) ,
T ( θ ) = 1 2 { [ 4 n 2   cos   θ n 2 sin 2 θ ( n 2   cos   θ + n 2 sin 2 θ ) 2 ] 2 + [ 4   cos   θ n 2 sin 2 θ ( cos   θ + n 2 sin 2 θ ) 2 ] 2 } .
S P P ( θ ) Δ ( l p l s ) F T H z ( θ ) F O p t ( θ ) .
Δ I P ( l P l S ) = d I P n 3 r 33 E T H z 3 ,
F I P = 2 n T H z + 1 [ 4 n ( n + 1 ) 2 ] [ 4 n n f s ( n + n f s ) 2 ] [ 4 n f s ( 1 + n f s ) 2 ] .
S I P F I P Δ I P ( l P l S ) exp ( d I P α ) .
I m o d = ( I m a x I m i n 2 ) Δ Γ   sin ( Ω t ) .
A = ( I m a x I m i n 2 ) Δ Γ ,
Δ Γ = 2 π d λ ( δ n p cos   ψ p δ n s cos   ψ s ) ,
Δ Γ = 2 π d I P λ ( δ n e δ n s ) .
δ n e = 1 2 n 3 r 33 E z ,
δ n o = 1 6 n 3 r 33 E z ,
r 33 = 3 λ π d I P n 3 1 ( I m a x I m i n ) ( A E e f f ) .

Metrics