Abstract

A tunable laser optical source equipped with wavelength and mode-hop monitors was developed to compensate for thermal expansion of the medium in holographic data storage. The laser's tunable range is 402409  nm, and supplying 90   mA of laser diode current provides an output power greater than 40   mW. The aberration of output light is less than 0.05  λrms. The temperature range within which the laser can compensate for thermal expansion of the medium is estimated based on the tunable range, which is ±13.5  °C for glass substrates and ±17.5  °C for amorphous polyolefin substrates.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
    [Crossref] [PubMed]
  2. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.
  3. K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).
  4. L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
    [Crossref]
  5. M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
    [Crossref]
  6. M.-L. Hsieh and K. Y. Hsu, "Grating detuning effect on holographic memory in photopolymers," Opt. Eng. 40, 2125-2133 (2001).
    [Crossref]
  7. S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
    [Crossref]
  8. L. Hildebrandt, R. Knispel, S. Stry, J. R. Sacher, and F. Schael, "Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy," Appl. Opt. 42, 2110-2118 (2003).
    [Crossref] [PubMed]
  9. L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
    [Crossref]
  10. T. Hard, "Laser wavelength selection and output coupling by a grating," Appl. Opt. 9, 1825-1830 (1970).
    [Crossref] [PubMed]
  11. M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
    [Crossref]
  12. H. Yoshioka, "Polycarbonate resin for optical discs," Kikan Kagaku Sosetsu 39, 105 (1998) (in Japanese).
  13. J. Tsujiuchi, Holography (Syokabo, 1997) (in Japanese).

2007 (2)

T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
[Crossref] [PubMed]

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

2006 (2)

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
[Crossref]

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

2005 (2)

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
[Crossref]

2003 (1)

2001 (1)

M.-L. Hsieh and K. Y. Hsu, "Grating detuning effect on holographic memory in photopolymers," Opt. Eng. 40, 2125-2133 (2001).
[Crossref]

1998 (2)

H. Yoshioka, "Polycarbonate resin for optical discs," Kikan Kagaku Sosetsu 39, 105 (1998) (in Japanese).

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

1997 (1)

J. Tsujiuchi, Holography (Syokabo, 1997) (in Japanese).

1995 (1)

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

1970 (1)

Akao, S.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Anderson, K.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

Bair, H.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

Boyd, C.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

Chung, S.

S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
[Crossref]

Curtis, K.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

Dhar, L.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

Esslinger, T.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Fotheringham, E.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

Fukumoto, A.

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Haensch, T. W.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Han, S.

S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
[Crossref]

Hard, T.

Hemmerich, A.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Hildebrandt, L.

Hill, A.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

Hirooka, K.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Hsieh, M.-L.

M.-L. Hsieh and K. Y. Hsu, "Grating detuning effect on holographic memory in photopolymers," Opt. Eng. 40, 2125-2133 (2001).
[Crossref]

Hsu, K. Y.

M.-L. Hsieh and K. Y. Hsu, "Grating detuning effect on holographic memory in photopolymers," Opt. Eng. 40, 2125-2133 (2001).
[Crossref]

Kasegawa, R.

Kim, T.

S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
[Crossref]

Knispel, R.

Kobayashi, S.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Koening, W.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Lee, B.

S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
[Crossref]

Okada, H.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Ricci, L.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Sacher, J. R.

Sako, K.

Samuels, D.

Schael, F.

Schilling, M.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

Schonoes, M. G.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

Seko, S.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Sissom, B.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

Stry, S.

Sugiki, M.

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
[Crossref]

Takahashi, K.

Takasaki, K.

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Takeya, M.

Tanaka, T.

T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
[Crossref] [PubMed]

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
[Crossref]

Toishi, M.

T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
[Crossref] [PubMed]

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
[Crossref]

Tsujiuchi, J.

J. Tsujiuchi, Holography (Syokabo, 1997) (in Japanese).

Vuletic, V.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Watanabe, K.

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

T. Tanaka, K. Takahashi, K. Sako, R. Kasegawa, M. Toishi, K. Watanabe, D. Samuels, and M. Takeya, "Littrow-type external-cavity blue laser for holographic data storage," Appl. Opt. 46, 3583-3592 (2007).
[Crossref] [PubMed]

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
[Crossref]

Weidemueller, M.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Wysocki, T. L.

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

Yoshioka, H.

H. Yoshioka, "Polycarbonate resin for optical discs," Kikan Kagaku Sosetsu 39, 105 (1998) (in Japanese).

Zimmermann, C.

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

L. Dhar, M. G. Schonoes, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, "Temperature-induced changes in photopolymer volume holograms," Appl. Phys. Lett. 73, 1337-1339 (1998).
[Crossref]

IEEE Photon. Technol. Lett. (1)

S. Chung, S. Han, T. Kim, and B. Lee, "Photopolymer holographic grating for a high-resolution tunable demultiplexer," IEEE Photon. Technol. Lett. 17, 597-599 (2005).
[Crossref]

Jpn. J. Appl. Phys. Part 1 (1)

M. Toishi, T. Tanaka, M. Sugiki, and K. Watanabe, "Improvement in temperature tolerance of holographic data storage using wavelength tunable laser," Jpn. J. Appl. Phys. Part 1 45, 1297-1304 (2006).
[Crossref]

Kikan Kagaku Sosetsu (1)

H. Yoshioka, "Polycarbonate resin for optical discs," Kikan Kagaku Sosetsu 39, 105 (1998) (in Japanese).

Opt. Commun. (2)

M. Toishi, T. Tanaka, A. Fukumoto, M. Sugiki, and K. Watanabe, "Evaluation of polycarbonate substrate hologram recording medium regarding implication of birefringence and thermal expansion," Opt. Commun. 270, 17-24 (2007).
[Crossref]

L. Ricci, M. Weidemueller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. Koening, and T. W. Haensch, "A compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[Crossref]

Opt. Eng. (1)

M.-L. Hsieh and K. Y. Hsu, "Grating detuning effect on holographic memory in photopolymers," Opt. Eng. 40, 2125-2133 (2001).
[Crossref]

Proc. SPIE (1)

K. Takasaki, K. Hirooka, S. Kobayashi, H. Okada, S. Akao, S. Seko, A. Fukumoto, M. Sugiki, and K. Watanabe, "Optical system designed for coaxial holographic recording on continuously rotating disc," in Optical Data Storage, R. Katayama and T. E. Schlesinger, eds., Proc. SPIE 6282, 62820U1-62820U9 (2006).

Other (2)

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High-speed holographic data storage at 100 Gbit/in.2," in Technical Digest Series (International Symposium on Optical Memory and Optical Data Storage, 2005), paper ThE2.

J. Tsujiuchi, Holography (Syokabo, 1997) (in Japanese).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Structure of the optical-laser source that consists of an emission section, a wavelength monitor, and a mode-hop monitor.

Fig. 2
Fig. 2

Wavelength versus the calculated change in focal length. The focal length of the achromatic lens does not depend on wavelength.

Fig. 3
Fig. 3

Wavelength versus aberration. The aberration is measured through anamorphic prisms that are used to create a circular beam shape.

Fig. 4
Fig. 4

Wavelength versus output angle error. The value along the x direction depends on the mechanism that is formed by a grating and a mirror; the value along the y direction depends on the stability of the rotating axis.

Fig. 5
Fig. 5

Wavelength versus output power. The parameter is a LD current. The output power is greater than 40   mW at 90   mA in the tunable range.

Fig. 6
Fig. 6

Wavelength monitor that consists of a grating, a mirror, and two detectors. When the grating rotates, the beam position on the detectors changes.

Fig. 7
Fig. 7

Wavelength versus wavelength monitor signal ( Ws ) .

Fig. 8
Fig. 8

Three-mode state observed by an optical spectrum analyzer. The horizontal-axis range is from 403.17 to 403.27   nm ( 0.01   nm / division ) .

Fig. 9
Fig. 9

Six-mode state observed by an optical spectrum analyzer. The horizontal-axis range is from 403.18 to 403.28   nm ( 0.01   nm / division ) .

Fig. 10
Fig. 10

Optical wedge and the ray paths.

Fig. 11
Fig. 11

Fringe contrast on the optical wedge. When a chip-mode hop occurs, the total fringe disappears.

Fig. 12
Fig. 12

Fringe contrast: (a) perfect single-mode state and (b) six-mode state.

Fig. 13
Fig. 13

Fringe contrast of a three-mode state: (a) m = 0 ( t 0 = 0.8   mm ) , (b) m = 1 ( t 0 = 2.3   mm ) , (c) m = 2 ( t 0 = 3.9   mm ) . The total fringe contrast decreases from (a) to (c).

Fig. 14
Fig. 14

LD current versus mode-hop signal ( M s ) . It is possible to detect the six-mode state, which exists at 70   mA and 83   mA , with a threshold of 1.9   V .

Fig. 15
Fig. 15

Optics for calculation. Incident direction of the signal beam is fixed between 67 ° and + 7 ° in the air during angle multiplexing. The reference beam is parallel, and the incident direction is changed from 30° to 60° during angle multiplexing.

Fig. 16
Fig. 16

Retrieval.

Fig. 17
Fig. 17

θread versus θdiff where reading temperature is 35 ° C , and wavelength is a parameter. θread indicates the reading-beam direction, and θdiff gives the diffracted-beam direction. When the reading beam has a 402.3   nm wavelength and 44.63° direction, all gratings generate diffracted rays. Substrate is glass. Recording conditions are a temperature of 25 ° C , a wavelength of 405   nm , and a reference beam angle of 45.0°.

Fig. 18
Fig. 18

Δ θ read versus θdiff, where the reading temperature is 35   ° C , the reading-beam wavelength is 402.3   nm , and the reference-beam direction is a parameter. Δ θ read is θ read θ ref_25   ° C , θ ref_25   ° C is the reference-beam direction at 25   ° C . Substrate is glass. Recording conditions are a temperature of 25   ° C , and a wavelength of 405   nm .

Fig. 19
Fig. 19

Temperature versus optimum wavelength. λ opt is written as λ opt = 0.26 ( T 25 ) + 405 , where T is the temperature. Substrate is glass.

Fig. 20
Fig. 20

Temperature versus optimum direction, when the reference-beam direction at 25 ° C is 45°. θopt is written as θ opt = 0.038 ( T 25 ) + 45 , where T is the temperature. Substrate is glass.

Fig. 21
Fig. 21

C T E of the substrate versus optimum wavelength, where the parameter is the temperature difference between reading and recording. Recording conditions are a temperature of 25 ° C , a wavelength of 405   nm , and a reference-beam direction of 45.0°. If C T E is 3.6 × 10 4 / ° C , the optimum wavelength is constant.

Fig. 22
Fig. 22

C T E of the substrate versus Δ θ opt , where Δ θ opt is θ opt θ ref , and the parameter is the temperature difference between reading and recording. Recording conditions are a temperature of 25   ° C , a wavelength of 405   nm , and a reference-beam direction of 45°. Angle adjustment is needed, even at a C T E of 3.6 × 10 4 / ° C .

Fig. 23
Fig. 23

Recorded grating. When the temperature changes from T 0 to T 1 , the direction and interval of the grating change from (a) to (b).

Tables (3)

Tables Icon

Table 1 Media Parameter

Tables Icon

Table 2 Coefficient of Thermal Expansion

Tables Icon

Table 3 Optimum Recording Wavelength According to the Optimum Reading Wavelength of 407.9 nm at 25 °C

Equations (42)

Equations on this page are rendered with MathJax. Learn more.

λ = 2 d sin α ,
z 2 = 2 x 1 d λ + Z ,
W s = U 1 U 2 U 1 + U 2 ,
I = 1 cos ( 2 π L λ ) ,
L = 2 ( t 0 + u tan γ ) ( n / cos β sin β tan β ) ,
t 0 = ( 2 m + 1 ) λ 1 λ 2 4 ( λ 2 λ 1 ) ( n / cos β sin β tan β ) ,
M s = V min V max ,
θ read = θ ref_ 25 ° C + Δ θ read .
λ opt = 0.26 ( T 25 ) + 405 ,
θ opt = 0.038 ( T 25 ) + 45.
λ o p t = 0.26 ( T 25 ) + 405 + 300 s ,
θ o p t = 0.038 ( T 25 ) + 45 + 50 s ,
λ opt = 0.26 ( T 25 ) + 407.9 + 300 s ,
z 0 = x 0 tan α .
x 1 x 0 z 1 z 0 = tan ( 2 α ) .
z 2 z 1 = t cos ζ [ cos ( 3 α + ζ ) sin ( 3 α + ζ ) tan ( 2 α ) ] ,
z 2 = x 0 x 1 cos ( 2 α ) sin ( 2 α ) + t cos ζ [ cos ( 3 α ζ ) sin ( 3 α ζ ) tan ( 2 α ) ] .
α = π / 4 + δ ,
L = 2 t 0 ( n / cos β sin β tan β ) ,
L = m 1 λ 1 ,
L = ( m 2 1 / 2 ) λ 2 ,
t = t 0 + u tan γ ,
L = 2 ( t 0 + u tan γ ) ( n / cos β sin β tan β ) .
I = 1 2 | 1 + exp [ i ( 2 π L λ + π ) ] | 2 ,
= 1 cos ( 2 π L λ ) .
Φ 0 = Θ r 0 + Θ s 0 2 ,
Λ 0 = λ 0 2 n 0 | sin ( Θ r 0 Θ s 0 2 ) | ,
sin Θ B 0 = λ 0 2 n 0 Λ 0 .
γ x = σ x ( T 1 T 0 ) ,
γ z = σ z ( T 1 T 0 ) + s ,
tan Φ 0 = x 0 / z 0 ,
Λ 0 = l 0 cos Φ 0 .
tan Φ 1 = x 0 ( 1 + γ x ) z 0 ( 1 + γ z ) ,
Λ 1 = l 0 ( 1 + γ x ) cos Φ 1 .
Φ 1 = arctan ( 1 + γ x 1 + γ z tan Φ 0 ) .
Λ 1 = Λ 0 ( 1 + γ x ) cos Φ 1 cos Φ 0 .
sin Θ B 1 = λ 1 2 n 1 Λ 1 ,
n 1 = n 0 + β ( T 1 T 0 ) ,
R 1 = Φ 1 + Θ B 1 .
R 1 = Φ 1 Θ B 1 .
D 1 = Φ 1 Θ B 1 .
D 1 = Φ 1 + Θ B 1 .

Metrics