Abstract

An easy-to-manufacture setup for a displacement sensor based on plastic optical fiber (POF) is analyzed, showing computational and experimental results. If the displacement is the consequence of force or pressure applied to the device, this can be used as a force or pressure transducer. Its principle of operation consists of bending a POF section around a flexible cylinder and measuring light attenuation when the whole set is subjected to side pressure. Attenuations are obtained computationally as a function of side deformation for different design parameters. Experimental results with an actually built prototype are also provided.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
    [CrossRef]
  2. D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.
  3. G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.
  4. P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
    [CrossRef]
  5. M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
    [CrossRef]
  6. M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
    [CrossRef]
  7. J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).
  8. J. Arrue and J. Zubia, "Analysis of the decrease in attenuation achieved by properly bending plastic optical fibers," IEE Proc. Optoelectron. 143, 135-138 (1996).
    [CrossRef]
  9. Toray Co. Ltd., "Laser components," www.lasercomponents.de/uk/fileadmin/user_upload/home/Datasheets/toray/pofaser.pdf.
  10. F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).
  11. A. W. Snyder and J. D. Love, "Reflection at a curved dielectric interface--Electromagnetic Tunnelling," IEEE Trans. Microwave Theory Tech. MTT-23, 134-141 (1975).
    [CrossRef]
  12. E. J. Hearn, Mechanics of Materials: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed. (Butterworth-Heinemann, 2001).
    [PubMed]
  13. G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
    [CrossRef] [PubMed]

2007 (1)

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

2005 (1)

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

2004 (3)

F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).

M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
[CrossRef]

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.

2003 (1)

2001 (1)

E. J. Hearn, Mechanics of Materials: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed. (Butterworth-Heinemann, 2001).
[PubMed]

1998 (1)

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

1997 (1)

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
[CrossRef]

1996 (1)

J. Arrue and J. Zubia, "Analysis of the decrease in attenuation achieved by properly bending plastic optical fibers," IEE Proc. Optoelectron. 143, 135-138 (1996).
[CrossRef]

1982 (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

1975 (1)

A. W. Snyder and J. D. Love, "Reflection at a curved dielectric interface--Electromagnetic Tunnelling," IEEE Trans. Microwave Theory Tech. MTT-23, 134-141 (1975).
[CrossRef]

Aiestaran, P.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

Aldabaldetreku, G.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

Arrue, J.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
[CrossRef]

F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

J. Arrue and J. Zubia, "Analysis of the decrease in attenuation achieved by properly bending plastic optical fibers," IEE Proc. Optoelectron. 143, 135-138 (1996).
[CrossRef]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Durana, G.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

Garitaonaindia, G.

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Hearn, E. J.

E. J. Hearn, Mechanics of Materials: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed. (Butterworth-Heinemann, 2001).
[PubMed]

Irusta, U.

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

Jauregui, C.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

Jiménez, F.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).

Kakanakov, R.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
[CrossRef]

Kalymnios, D.

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.

Kassamakov, I.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
[CrossRef]

Lomer, M.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
[CrossRef]

López Higuera, J. M.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, "Reflection at a curved dielectric interface--Electromagnetic Tunnelling," IEEE Trans. Microwave Theory Tech. MTT-23, 134-141 (1975).
[CrossRef]

Luukkala, M.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
[CrossRef]

Mateo, J.

Miskowicz, J.

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

Poisel, H.

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Raatikainen, P.

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Scully, P.

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, "Reflection at a curved dielectric interface--Electromagnetic Tunnelling," IEEE Trans. Microwave Theory Tech. MTT-23, 134-141 (1975).
[CrossRef]

Zubia, J.

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.

M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
[CrossRef]

F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).

G. Durana, J. Zubia, J. Arrue, G. Aldabaldetreku, and J. Mateo, "Dependence of bending losses on cladding thickness in plastic optical fibers," Appl. Opt. 42, 997-1002 (2003).
[CrossRef] [PubMed]

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

J. Arrue and J. Zubia, "Analysis of the decrease in attenuation achieved by properly bending plastic optical fibers," IEE Proc. Optoelectron. 143, 135-138 (1996).
[CrossRef]

Appl. Opt. (1)

IEE Proc. Optoelectron. (1)

J. Arrue and J. Zubia, "Analysis of the decrease in attenuation achieved by properly bending plastic optical fibers," IEE Proc. Optoelectron. 143, 135-138 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, "Optical fiber sensor technology," IEEE J. Quantum Electron. QE 18, 626-665 (1982).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. W. Snyder and J. D. Love, "Reflection at a curved dielectric interface--Electromagnetic Tunnelling," IEEE Trans. Microwave Theory Tech. MTT-23, 134-141 (1975).
[CrossRef]

Meas. Sci. Technol. (1)

M. Lomer, J. Zubia, J. Arrue, and J. M. López Higuera, "Principle of functioning of a self-compensating fibre-optical displacement sensor based on diffraction-grating ended POF," Meas. Sci. Technol. 15, 1-5 (2004).
[CrossRef]

Sens. Actuators (2)

P. Raatikainen, I. Kassamakov, R. Kakanakov, and M. Luukkala, "Fiber-optic liquid-level sensor," Sens. Actuators A 58, 93-97 (1997).
[CrossRef]

M. Lomer, J. Arrue, C. Jauregui, P. Aiestaran, J. Zubia, and J. M. López Higuera, "Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor," Sens. Actuators A 137, 68-73 (2007).
[CrossRef]

Other (6)

D. Kalymnios, P. Scully, J. Zubia, and H. Poisel, "POF sensors overview," in Proceedings of the Thirteenth International Conference on Plastic Optical Fibres and Applications--POF'04 (Nürnberg, 2004), pp. 237-244.

G. Garitaonaindia, J. Zubia, U. Irusta, J. Arrue, and J. Miskowicz, "Passive device based on plastic optical fiber to determine the index of refraction of liquids," in Proceedings of the Seventh International Conference on Plastic Optical Fibres and Applications--POF'98 (Berlin, 1998), pp. 178-184.

J. Arrue, G. Aldabaldetreku, G. Durana, J. Zubia, and F. Jiménez, "Computational research on the behaviour of bent plastic optical fibres in communications links and sensing applications," in Research Developments in Optics, 5th issue (Research Signpost, 2005).

Toray Co. Ltd., "Laser components," www.lasercomponents.de/uk/fileadmin/user_upload/home/Datasheets/toray/pofaser.pdf.

F. Jiménez, J. Arrue, G. Aldabaldetreku, and J. Zubia, "Numerical Simulation of Light Propagation in Plastic Optical Fibres of Arbitrary 3D Geometry," WSEAS Trans. Mathematics 3, 4, 824-829 (Corfu, 2004).

E. J. Hearn, Mechanics of Materials: An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials, 3rd ed. (Butterworth-Heinemann, 2001).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fiber bent around a cylinder and pressure applied on the sides, resulting in an increase of light power attenuation.

Fig. 2
Fig. 2

Both the symmetry axis of the fiber and its cross sections in the proximity of the pressing plane deform to a certain extent.

Fig. 3
Fig. 3

If the material of the fiber is much stiffer than that of the cylinder, its cross sections remain circular, but its symmetry axis still deforms.

Fig. 4
Fig. 4

If the material of the cylinder is much stiffer than that of the fiber, the increase in attenuation is caused mainly by the deformation of the cross sections of the fiber.

Fig. 5
Fig. 5

Assumptions made on the deformations of cylinder and fiber. Parameter q characterizes fiber-to-cylinder maximum unit deformation ratio.

Fig. 6
Fig. 6

(Color online) Increase in attenuation in relation with total deformation for different light launching conditions: using a laser followed by different lenses to achieve numerical apertures of 0.65, 0.16, and 0.09, respectively, and using a LED whose numerical aperture is 0.46, with and without a mode scrambler placed after it.

Fig. 7
Fig. 7

(Color online) Influence on attenuation of light source NA, deformation parameter k, and refractive index n 2 of the outer medium. When the sensor is in air, n 2 = 1 ; when it is in water, n 2 = 1.33 .

Fig. 8
Fig. 8

(Color online) Influence of cylinder radius R on the sensitivity of the device (given by the slope of the lines) when immersed in water.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

a = a a r e a + k ( a p e r i m a a r e a ) ,
q = ( F f 1 ) / ( R r 1 ) ,

Metrics