Abstract

Optical properties of metal films, such as phase shift on reflection or penetration depth of electromagnetic waves into mirrors, play an important role in determining the resonance wavelength of a microcavity. We created a series of λ/2 cavities with a symmetrical structure of glass∕Ag∕lithium fluoride∕Ag by changing the thickness of the Ag film. The penetration depth at different thicknesses of Ag film was obtained from the transmittance peaks of the cavities. Phase shift on reflection at the lithium fluoride–Ag interface was calculated based on the measured optical constants. The formulation between phase shift and penetration depth was proved by experimental results, which are in good agreement with the theoretical calculations.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
    [CrossRef] [PubMed]
  2. F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
    [CrossRef] [PubMed]
  3. A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
    [CrossRef]
  4. H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I. Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
    [CrossRef]
  5. M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
    [CrossRef]
  6. R. S. Geels, S. W. Corzine, and L. A. Coldren, "InGaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1359-1367 (1991).
    [CrossRef]
  7. T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
    [CrossRef]
  8. J. Grüner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).
    [CrossRef]
  9. Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
    [CrossRef]
  10. A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
    [CrossRef]
  11. S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," J. Appl. Phys. 86, 2407-2411 (1999).
    [CrossRef]
  12. W. Lichten, "Precise wavelength measurements and optical phase shifts. I. General theory," J. Opt. Soc. Am. A 2, 1869-1876 (1985).
    [CrossRef]
  13. B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
    [CrossRef]
  14. J. M. Bennett, "Precise method for measuring the absolute phase change on reflection," J. Opt. Soc. Am 54, 612-624 (1964).
    [CrossRef]
  15. W. H. Briscoe and R. G. Horn, "Optical phase change at the interface between mica and thin silver film," J. Opt. A 6, 112-116 (2004).
    [CrossRef]

2004

W. H. Briscoe and R. G. Horn, "Optical phase change at the interface between mica and thin silver film," J. Opt. A 6, 112-116 (2004).
[CrossRef]

2002

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

1999

S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," J. Appl. Phys. 86, 2407-2411 (1999).
[CrossRef]

1998

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I. Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

1997

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

1996

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

J. Grüner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).
[CrossRef]

1995

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

1992

H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
[CrossRef] [PubMed]

1991

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

R. S. Geels, S. W. Corzine, and L. A. Coldren, "InGaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

1985

1964

J. M. Bennett, "Precise method for measuring the absolute phase change on reflection," J. Opt. Soc. Am 54, 612-624 (1964).
[CrossRef]

Bai, F.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I. Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Bennett, J. M.

J. M. Bennett, "Precise method for measuring the absolute phase change on reflection," J. Opt. Soc. Am 54, 612-624 (1964).
[CrossRef]

Billeb, A.

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

Bradley, D. D. C.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Briscoe, W. H.

W. H. Briscoe and R. G. Horn, "Optical phase change at the interface between mica and thin silver film," J. Opt. A 6, 112-116 (2004).
[CrossRef]

Cacialli, F.

J. Grüner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).
[CrossRef]

Coldren, L. A.

R. S. Geels, S. W. Corzine, and L. A. Coldren, "InGaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Corzine, S. W.

R. S. Geels, S. W. Corzine, and L. A. Coldren, "InGaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Crescentini, L.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

De Martini, F.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I. Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

De Silvestri, S.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Deng, Z.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Dodabalapur, A.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Duan, H.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Friend, R. H.

J. Grüner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).
[CrossRef]

Geels, R. S.

R. S. Geels, S. W. Corzine, and L. A. Coldren, "InGaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Grell, M.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Grieshaber, W.

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

Grüner, J.

J. Grüner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).
[CrossRef]

Ho, K. M.

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Horn, R. G.

W. H. Briscoe and R. G. Horn, "Optical phase change at the interface between mica and thin silver film," J. Opt. A 6, 112-116 (2004).
[CrossRef]

Jordan, R. H.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Karlicek, R. F.

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

Lichten, W.

Lidzey, D. G.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Loudon, R.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

Marrocco, M.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

Mataloni, P.

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

Miller, T. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Ozbay, E.

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Phillips, J. M.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Rothberg, L. J.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Schubert, E. F.

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

Sigalas, M. M.

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Slusher, R. E.

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

Soukoulis, C. M.

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Stagira, S.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Stocker, D.

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

Strite, S.

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Taga, Y.

S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," J. Appl. Phys. 86, 2407-2411 (1999).
[CrossRef]

Temelkuran, B.

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Tokito, S.

S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," J. Appl. Phys. 86, 2407-2411 (1999).
[CrossRef]

Tsutsui, T.

S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," J. Appl. Phys. 86, 2407-2411 (1999).
[CrossRef]

Tuttle, G.

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Ünlü, M. S.

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

Virgili, T.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Wang, Y.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I. Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

Xiong, Z.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Yokoyama, H.

H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
[CrossRef] [PubMed]

Zavelani-Rossi, M.

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

Zhan, Y.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Appl. Phys. A

B. Temelkuran, E. Ozbay, M. M. Sigalas, G. Tuttle, C. M. Soukoulis, and K. M. Ho, "Reflection properties of metallic photonic crystals," Appl. Phys. A 66, 363-365 (1998).
[CrossRef]

Appl. Phys. Lett.

A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek, Jr., "Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures," Appl. Phys. Lett. 70, 2790-2792 (1997).
[CrossRef]

T. Virgili, D. G. Lidzey, M. Grell, D. D. C. Bradley, S. Stagira, M. Zavelani-Rossi, and S. De Silvestri, "Influence of the orientation of liquid crystalline poly(9,9-dioctylfluorene) on its lasing properties in a planar microcavity," Appl. Phys. Lett. 80, 4088-4090 (2002).
[CrossRef]

IEEE J. Quantum Electron.

H. Benisty, H. De Neve, and C. Weisbuch, "Impact of planar microcavity effects on light extraction-Part I. Basic concepts and analytical trends," IEEE J. Quantum Electron. 34, 1612-1631 (1998).
[CrossRef]

R. S. Geels, S. W. Corzine, and L. A. Coldren, "InGaAs vertical-cavity surface-emitting lasers," IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

J. Appl. Phys.

M. S. Ünlü and S. Strite, "Resonant cavity enhanced photonic devices," J. Appl. Phys. 78, 607-639 (1995).
[CrossRef]

J. Grüner, F. Cacialli, and R. H. Friend, "Emission enhancement in single-layer conjugated polymer microcavities," J. Appl. Phys. 80, 207-215 (1996).
[CrossRef]

A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, "Physics and applications of organic microcavity light emitting diodes," J. Appl. Phys. 80, 6954-6964 (1996).
[CrossRef]

S. Tokito, T. Tsutsui, and Y. Taga, "Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions," J. Appl. Phys. 86, 2407-2411 (1999).
[CrossRef]

J. Opt. A

W. H. Briscoe and R. G. Horn, "Optical phase change at the interface between mica and thin silver film," J. Opt. A 6, 112-116 (2004).
[CrossRef]

J. Opt. Soc. Am

J. M. Bennett, "Precise method for measuring the absolute phase change on reflection," J. Opt. Soc. Am 54, 612-624 (1964).
[CrossRef]

J. Opt. Soc. Am. A

Phys. Rev. A

F. De Martini, M. Marrocco, P. Mataloni, L. Crescentini, and R. Loudon, "Spontaneous emission in the optical microscopic cavity," Phys. Rev. A 43, 2480-2497 (1991).
[CrossRef] [PubMed]

Science

H. Yokoyama, "Physics and device applications of optical microcavities," Science 256, 66-70 (1992).
[CrossRef] [PubMed]

Synth. Met.

Z. Deng, Y. Zhan, H. Duan, Z. Xiong, F. Bai, and Y. Wang, "Optical microcavity based on porous and organic materials," Synth. Met. 129, 299-302 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical constants of LiF and Ag.

Fig. 2
Fig. 2

Definition of phase shift β.

Fig. 3
Fig. 3

Dependence of the phase shift of metal Ag film on thickness and wavelength.

Fig. 4
Fig. 4

Comparison of electrical field distribution in the (a) ideal and (b) real metal microcavities. (c) The measured transmittance spectrum of microcavity (b).

Fig. 5
Fig. 5

Dependence of penetration depth and resonance wavelength on Ag thickness. Curve a, simulated penetration depth of the metal Ag mirror at the glass side; curve b, simulated penetration depth of the metal Ag mirror at the air side. Curve d, sum of the simulated penetration depth of the two metal Ag mirrors. The filled triangles represent the sum of the experimentally determined penetration depth. Curve c, simulated resonance wavelength of the microcavities. The filled circles represent the resonance wavelength obtained by experiment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

2 ( i n i d i + L pen 1 + L pen2 ) = m λ ,
L pen = λ ( π β ) 4 π ,
r = E r E i = | r | e i β = n 0 ( n 1 i k 1 ) n 0 + ( n 1 i k 1 ) = Re ( r ) + i Im ( r ) ,
β = arctan   Im ( r ) Re ( r ) = arctan   2 n 0 k 1 n 0 2 n 1 2 k 1 2 ,
microcavity(a):   air / ideal   metal(50   nm) / LiF ( 174   nm ) / ideal   metal   ( 50   nm ) / glass;
microcavity(b):   air / Ag(50   nm) / LiF ( 125   nm ) / Ag ( 50   nm ) / glass .

Metrics