Abstract

In this paper we investigate the feasibility of a massively parallel self-mixing imaging system based on an array of vertical-cavity surface-emitting lasers (VCSELs) to measure surface profiles of displacement, distance, velocity, and liquid flow rate. The concept of the system is demonstrated using a prototype to measure the velocity at different radial points on a rotating disk, and the velocity profile of diluted milk in a custom built diverging-converging planar flow channel. It is envisaged that a scaled up version of the parallel self-mixing imaging system will enable real-time surface profiling, vibrometry, and flowmetry.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
    [CrossRef]
  2. K. Petermann, "External optical feedback phenomena in semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995).
    [CrossRef]
  3. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1991).
  4. S. Donati, Electro-Optical Instrumentation (Prentice Hall, 2004).
  5. D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity; Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
    [CrossRef]
  6. Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).
  7. G. P. Agrawal, "Line narrowing in a single-mode injection laser due to external optical feedback," IEEE J. Quantum Electron. 20, 468-471 (1984).
    [CrossRef]
  8. S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
    [CrossRef]
  9. G. Beheim and K. Fritsch, "Range finding using frequency-modulated laser diode," Appl. Opt. 25, 1439-1442 (1986).
    [CrossRef] [PubMed]
  10. J. H. Churnside, "Laser Doppler velocimetry by modulating a CO2 laser with backscattered light," Appl. Opt. 23, 61-66 (1984).
    [CrossRef] [PubMed]
  11. G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
    [CrossRef]
  12. M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
    [CrossRef] [PubMed]
  13. C. Zakian, M. Dickinson, and T. King, "Particle sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A , Pure Appl. Opt. 7, S445-S452 (2005).
    [CrossRef]
  14. G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000).
    [CrossRef]
  15. Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
    [CrossRef]
  16. T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
    [CrossRef]
  17. E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999).
    [CrossRef]
  18. Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998).
    [CrossRef]
  19. P. J. de Groot and G. M. Gallatin, "Three-dimensional imaging coherent laser radar array," Opt. Eng. 28, 456-460 (1989).
  20. T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
    [CrossRef]
  21. T. C. Papanastasiou, Applied Fluid Mechanics (Prentice Hall, 1994).
  22. F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).
    [CrossRef]
  23. R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20, 2097-107 (1981).
    [CrossRef] [PubMed]
  24. M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-couple semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).
    [CrossRef] [PubMed]
  25. F. F. M. de Mul, L. Scalise, A. N. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, "Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis," Appl. Opt. 41, 658-667 (2002).
    [CrossRef] [PubMed]
  26. L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985).
    [CrossRef]
  27. R. Lohwasser and G. Soelkner, "Experimental and theoretical laser-Doppler frequency spectra of a tissuelike model of a human head with capillaries," Appl. Opt. 38, 2128-2137 (1999).
    [CrossRef]
  28. A. Serov, W. Steenbergen, and F. de Mul, "Laser Doppler perfusion imaging with a complimentary metal oxide semiconductor image sensor," Opt. Lett. 27, 300-302 (2002).
    [CrossRef]
  29. A. Serov, B. Steinacher, and T. Lasser, "Full-field laser Doppler perfusion imaging and monitoring with an intelligent CMOS camera," Opt. Express 13, 3681-3689 (2005).
    [CrossRef] [PubMed]
  30. A. Serov and T. Lasser, "High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor," Opt. Express 13, 6416-6428 (2005).
    [CrossRef] [PubMed]
  31. Fluent. Inc., "fluent: robust, reliable, comprehensive CFD software," http://www.fluent.com/software/fluent/index.htm.
  32. J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984).
    [CrossRef] [PubMed]
  33. B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
    [CrossRef]
  34. C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).
    [CrossRef]
  35. M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.
  36. K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006).
    [CrossRef]
  37. R. Wang, A. D. Rakić, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002).
    [CrossRef] [PubMed]
  38. F.-C. F. Tsai, C. J. O'Brien, N. S. Petrovic, and A. D. Rakić, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387 (2005).
    [CrossRef] [PubMed]
  39. L. Scalise and N. Paone, "Laser Doppler vibrometry based on the self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002).
    [CrossRef]
  40. Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
    [CrossRef]

2006 (3)

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006).
[CrossRef]

Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
[CrossRef]

2005 (5)

2004 (3)

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

S. Donati, Electro-Optical Instrumentation (Prentice Hall, 2004).

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

2003 (1)

C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).
[CrossRef]

2002 (4)

2001 (2)

T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
[CrossRef]

2000 (2)

G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000).
[CrossRef]

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

1999 (2)

E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999).
[CrossRef]

R. Lohwasser and G. Soelkner, "Experimental and theoretical laser-Doppler frequency spectra of a tissuelike model of a human head with capillaries," Appl. Opt. 38, 2128-2137 (1999).
[CrossRef]

1998 (2)

Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
[CrossRef]

1995 (2)

K. Petermann, "External optical feedback phenomena in semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

1994 (1)

T. C. Papanastasiou, Applied Fluid Mechanics (Prentice Hall, 1994).

1992 (3)

1991 (1)

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1991).

1989 (1)

P. J. de Groot and G. M. Gallatin, "Three-dimensional imaging coherent laser radar array," Opt. Eng. 28, 456-460 (1989).

1986 (1)

1985 (1)

L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985).
[CrossRef]

1984 (3)

1981 (1)

1980 (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Aarnoudse, J. G.

Agrawal, G. P.

G. P. Agrawal, "Line narrowing in a single-mode injection laser due to external optical feedback," IEEE J. Quantum Electron. 20, 468-471 (1984).
[CrossRef]

Beheim, G.

Bernengo, J. C.

L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985).
[CrossRef]

Bertling, K.

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

Bonner, R.

Bosch, T.

T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
[CrossRef]

Brauch, U.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Chang, C.-H.

C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).
[CrossRef]

Chang-Hasnain, C. J.

C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).
[CrossRef]

Chellali, R.

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
[CrossRef]

Chrostowski, L.

C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).
[CrossRef]

Churnside, J. H.

Cunningham, J. E.

K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006).
[CrossRef]

Dassel, A. C. M.

de Groot, P. J.

P. J. de Groot and G. M. Gallatin, "Three-dimensional imaging coherent laser radar array," Opt. Eng. 28, 456-460 (1989).

de Mul, F.

de Mul, F. F. M.

Dickinson, M.

C. Zakian, M. Dickinson, and T. King, "Particle sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A , Pure Appl. Opt. 7, S445-S452 (2005).
[CrossRef]

Donati, S.

S. Donati, Electro-Optical Instrumentation (Prentice Hall, 2004).

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

Duteil, L.

L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985).
[CrossRef]

Fritsch, K.

Gagnon, E.

E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999).
[CrossRef]

Gallatin, G. M.

P. J. de Groot and G. M. Gallatin, "Three-dimensional imaging coherent laser radar array," Opt. Eng. 28, 456-460 (1989).

Gatare, I.

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

Giesen, A.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Giuliani, G.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
[CrossRef]

G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

Goossen, K. W.

K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006).
[CrossRef]

Graaff, R.

Greve, J.

Hara, S.

Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998).
[CrossRef]

Hayes-Gill, B. R.

Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
[CrossRef]

Hergenhan, G.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Hoang, N. C.

Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
[CrossRef]

Huegel, H.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Kane, D. M.

D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity; Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
[CrossRef]

Katagiri, Y.

Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998).
[CrossRef]

King, T.

C. Zakian, M. Dickinson, and T. King, "Particle sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A , Pure Appl. Opt. 7, S445-S452 (2005).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Koelink, M. H.

Krishnamoorthy, A. V.

K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006).
[CrossRef]

Lang, R.

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

Lasser, T.

Lescure, M.

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
[CrossRef]

Lim, Y. L.

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

Lohwasser, R.

Luecke, B.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Majewski, M. L.

Merlo, S.

S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

Moes, P.

Morgan, S. P.

Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
[CrossRef]

Norgia, M.

G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000).
[CrossRef]

Nossal, R.

O'Brien, C. J.

Opower, H.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Panajotov, K.

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

Paone, N.

L. Scalise and N. Paone, "Laser Doppler vibrometry based on the self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002).
[CrossRef]

Papanastasiou, T. C.

T. C. Papanastasiou, Applied Fluid Mechanics (Prentice Hall, 1994).

Passerini, M.

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
[CrossRef]

Petermann, K.

K. Petermann, "External optical feedback phenomena in semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995).
[CrossRef]

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1991).

Petoukhova, A. N.

Petrovic, N. S.

Rakic, A. D.

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

F.-C. F. Tsai, C. J. O'Brien, N. S. Petrovic, and A. D. Rakić, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387 (2005).
[CrossRef] [PubMed]

R. Wang, A. D. Rakić, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002).
[CrossRef] [PubMed]

Rio, P.

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

Rivest, J. F.

E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999).
[CrossRef]

Scalise, L.

Schalla, W.

L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985).
[CrossRef]

Scholl, M.

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Scholten, F. G.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
[CrossRef] [PubMed]

Sciamanna, M.

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

Serov, A.

Servagent, N.

T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
[CrossRef]

Shore, K. A.

D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity; Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
[CrossRef]

Slot, M.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
[CrossRef] [PubMed]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-couple semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).
[CrossRef] [PubMed]

Soelkner, G.

Steenbergen, W.

Steinacher, B.

Thienpont, H.

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

Triginer, M.

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

Tsai, F.-C. F.

Tucker, J. R.

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

Tuynman, F. H. B.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
[CrossRef] [PubMed]

van Herwijnen, M.

Wang, R.

Weijers, A. L.

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
[CrossRef] [PubMed]

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).
[CrossRef]

Yu, Y.

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

Zakian, C.

C. Zakian, M. Dickinson, and T. King, "Particle sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A , Pure Appl. Opt. 7, S445-S452 (2005).
[CrossRef]

Zhu, Y.

Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
[CrossRef]

Appl. Opt. (10)

R. Bonner and R. Nossal, "Model for laser Doppler measurements of blood flow in tissue," Appl. Opt. 20, 2097-107 (1981).
[CrossRef] [PubMed]

J. H. Churnside, "Laser Doppler velocimetry by modulating a CO2 laser with backscattered light," Appl. Opt. 23, 61-66 (1984).
[CrossRef] [PubMed]

J. H. Churnside, "Signal-to-noise in a backscatter-modulated Doppler velocimeter," Appl. Opt. 23, 2097-2106 (1984).
[CrossRef] [PubMed]

G. Beheim and K. Fritsch, "Range finding using frequency-modulated laser diode," Appl. Opt. 25, 1439-1442 (1986).
[CrossRef] [PubMed]

M. H. Koelink, M. Slot, F. F. M. de Mul, J. Greve, R. Graaff, A. C. M. Dassel, and J. G. Aarnoudse, "Laser Doppler velocimeter based on the self-mixing effect in a fiber-couple semiconductor laser: theory," Appl. Opt. 31, 3401-3408 (1992).
[CrossRef] [PubMed]

F. F. M. de Mul, M. H. Koelink, A. L. Weijers, J. Greve, J. G. Aarnoudse, R. Graaff, and A. C. M. Dassel, "Self-mixing laser-Doppler velocimetry of liquid flow and of blood perfusion in tissue," Appl. Opt. 31, 5844-5851 (1992).
[CrossRef]

R. Lohwasser and G. Soelkner, "Experimental and theoretical laser-Doppler frequency spectra of a tissuelike model of a human head with capillaries," Appl. Opt. 38, 2128-2137 (1999).
[CrossRef]

F. F. M. de Mul, L. Scalise, A. N. Petoukhova, M. van Herwijnen, P. Moes, and W. Steenbergen, "Glass-fiber self-mixing intra-arterial laser Doppler velocimetry: signal stability and feedback analysis," Appl. Opt. 41, 658-667 (2002).
[CrossRef] [PubMed]

R. Wang, A. D. Rakić, and M. L. Majewski, "Design of microchannel free-space optical interconnects based on vertical-cavity surface-emitting laser arrays," Appl. Opt. 41, 3469-3478 (2002).
[CrossRef] [PubMed]

F.-C. F. Tsai, C. J. O'Brien, N. S. Petrovic, and A. D. Rakić, "Analysis of optical channel cross talk for free-space optical interconnects in the presence of higher-order transverse modes," Appl. Opt. 44, 6380-6387 (2005).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (3)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

G. P. Agrawal, "Line narrowing in a single-mode injection laser due to external optical feedback," IEEE J. Quantum Electron. 20, 468-471 (1984).
[CrossRef]

S. Donati, G. Giuliani, and S. Merlo, "Laser diode feedback interferometer for measurement of displacements without ambiguity," IEEE J. Quantum Electron. 31, 113-119 (1995).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

K. Petermann, "External optical feedback phenomena in semiconductor lasers," IEEE J. Sel. Top. Quantum Electron. 1, 480-489 (1995).
[CrossRef]

C.-H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, "Injection locking of VCSELs," IEEE J. Sel. Top. Quantum Electron. 9, 1386-1393 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. W. Goossen, J. E. Cunningham, and A. V. Krishnamoorthy, "1 × 12 VCSEL array with optical monitoring via flip-chip bonding," IEEE Photon. Technol. Lett. 18, 1219-1221 (2006).
[CrossRef]

G. Giuliani and M. Norgia, "Laser diode linewidth measurement by means of self-mixing interferometry," IEEE Photon. Technol. Lett. 12, 1028-1030 (2000).
[CrossRef]

Y. Yu, G. Giuliani, and S. Donati, "Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect," IEEE Photon. Technol. Lett. 16, 990-992 (2004).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

L. Duteil, J. C. Bernengo, and W. Schalla, "A double wavelength laser Doppler system to investigate skin microcirculation," IEEE Trans. Biomed. Eng. BME-32, 439-447 (1985).
[CrossRef]

IEEE Trans. Instrum. Meas. (2)

T. Bosch, N. Servagent, R. Chellali, and M. Lescure, "Three-dimensional object construction using a self-mixing type scanning laser range finder," IEEE Trans. Instrum. Meas. 47, 1326-1329 (1998).
[CrossRef]

E. Gagnon and J. F. Rivest, "Laser range imaging using the self-mixing effect in a laser diode," IEEE Trans. Instrum. Meas. 48, 693-699 (1999).
[CrossRef]

J. Opt. A (1)

C. Zakian, M. Dickinson, and T. King, "Particle sizing and flow measurement using self-mixing interferometry with a laser diode," J. Opt. A , Pure Appl. Opt. 7, S445-S452 (2005).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Katagiri and S. Hara, "Scanning-probe microscope using an ultrasmall coupled-cavity laser distortion sensor based on mechanical negative-feedback stabilization," Meas. Sci. Technol. 9, 1441-1445 (1998).
[CrossRef]

Med. Biol. Eng. Comput. (1)

M. Slot, M. H. Koelink, F. G. Scholten, F. F. M. de Mul, A. L. Weijers, J. Greve, R. Graaff, A. C. M. Dassel, J. G. Aarnoudse, and F. H. B. Tuynman, "Blood flow velocity measurements based on the self-mixing effect in a fibre-coupled semiconductor laser: in vivo and in vitro measurements," Med. Biol. Eng. Comput. 30, 441-446 (1992).
[CrossRef] [PubMed]

Opt. Eng. (3)

G. Giuliani, S. Donati, M. Passerini, and T. Bosch, "Angle measurement by injection detection in a laser diode," Opt. Eng. (Bellingham) 40, 95-99 (2001).
[CrossRef]

P. J. de Groot and G. M. Gallatin, "Three-dimensional imaging coherent laser radar array," Opt. Eng. 28, 456-460 (1989).

T. Bosch, N. Servagent, and S. Donati, "Optical feedback interferometry for sensing application," Opt. Eng. 40, 20-27 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

L. Scalise and N. Paone, "Laser Doppler vibrometry based on the self-mixing effect," Opt. Lasers Eng. 38, 173-184 (2002).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

B. Luecke, G. Hergenhan, U. Brauch, M. Scholl, A. Giesen, H. Opower, and H. Huegel, "Autostable injection-locking of a 4 × 4 VCSEL-array with on chip master laser," in Vertical-Cavity Surface-Emitting Laser IV, K. D. Choquette and C. Lei, eds., Proc. SPIE 3946, 240-245 (2000).
[CrossRef]

Y. L. Lim, K. Bertling, P. Rio, J. R. Tucker, and A. D. Rakić, "Displacement and distance measurement using the change in junction voltage across a laser diode due to the self-mixing effect," in Photonics: Design, Technology and Packaging II, D. Abbott, Y. S. Kivshar, H. H. Rubinsztein-Dunlop, and S. Fan, eds., Proc. SPIE 6038, 378-387 (2006).

Other (7)

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic Publishers, 1991).

S. Donati, Electro-Optical Instrumentation (Prentice Hall, 2004).

D. M. Kane and K. A. Shore, Unlocking Dynamical Diversity; Optical Feedback Effects on Semiconductor Lasers (Wiley, 2005).
[CrossRef]

T. C. Papanastasiou, Applied Fluid Mechanics (Prentice Hall, 1994).

Fluent. Inc., "fluent: robust, reliable, comprehensive CFD software," http://www.fluent.com/software/fluent/index.htm.

Y. Zhu, B. R. Hayes-Gill, S. P. Morgan, and N. C. Hoang, "An FPGA based generic prototyping platform employed in a CMOS laser Doppler blood flow camera," in Proceedings of IEEE International Conference on Field Programmable Technology (IEEE, 2006), pp. 281-284.
[CrossRef]

M. Triginer, I. Gatare, H. Thienpont, M. Sciamanna, and K. Panajotov, "Experimental mapping of polarization dynamics induced by optical injection in VCSELs," in Proceedings of the 9th Annual Symposium of the IEEE/LEOS Benelux Chapter (IEEE, 2004), pp. 151-154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Illustration of a scaled down version of the proposed parallel self-mixing imaging system.

Fig. 2
Fig. 2

(Color online) Small scale prototype using eight individual single-mode VCSELs with integrated PD arranged in a linear array. Pitch of the array is 5.8   mm . A separate block holds eight aspheric lenses ( N.A. = 0.47 , clear aperture 3.17   mm , and focal length f = 3.38   mm ). (a) Angled view of the constructed imaging system; (b) front view of the constructed imaging system.

Fig. 3
Fig. 3

(Color online) (a) Mechanical drawing of the top view of the custom made diverging-converging planar flow channel; (b) photograph of the constructed flow channel.

Fig. 4
Fig. 4

Block diagram for a single channel of the experimental setup.

Fig. 5
Fig. 5

Frequency spectra for a single channel at disk speeds of 30   rpm (squares), 54.1 rpm (open circles), and 74.8   rpm (triangles).

Fig. 6
Fig. 6

(a) Actual (square) versus measured velocity profile for rotating disk for multiple channel operation (open circle) and single channel operation (triangle) at a disk speed of 26 rpm; (b) accuracy of velocity for different channels for rotating disk for multiple channel operation (squares) and single channel operation (open circles) at a disk speed of 26 rpm.

Fig. 7
Fig. 7

(a) Frequency spectra for a single channel at inlet flow rates of 3.9 mL∕min (solid curve), 5.9   mL / min (dashed curve), 7.9 mL / min (dotted curve) and 10 mL / min (dashed dotted curve); (b) frequency spectra for a single channel at an inlet flow rate of 3.9 mL / min with other VCSELs not operating (solid curve), and with all VCSELs operating concurrently (dashed curve).

Fig. 8
Fig. 8

(Color online) (a) Microscope image of VCSEL and PD inside the TO-46 package; (b) component layout of the TO-46 package.

Fig. 9
Fig. 9

(a) Weighted moment (squares) for a single channel at different inlet flow rates fitted to a quadratic function (dashes); (b) actual (solid curve) versus measured (squares) centerline velocity profile for flow channel.

Fig. 10
Fig. 10

(Color online) Velocity distribution in the flow channel; (a) width of flow channel versus entrance length; (b) simulated velocity profile of flow channel; and (c) measured velocity profile of flow channel. The numbers on the contour map in (b) correspond to the velocities of the liquid at each contour level with the units of mm∕s. Both (b) and (c) have ten contour levels with a 0.42 mm∕s change in velocity between neighboring contour levels as indicated in (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f Doppler = 2 ν target n cos θ λ ,
ω = 0 ω S ( ω ) d ω 0 S ( ω ) d ω ,

Metrics