Abstract

Differential reflectometry (DR) is an effective tool to supplement existing explosives detection systems thus making the combined unit more effective than one tool alone. It is an optical technique in which the light beam (UV) emanates from an extended distance onto the substance under investigation, thus rendering it to be a standoff method. DR allows the measurement of the energies that electrons absorb from photons as they are raised into higher, allowed energy states. These electron transitions serve as a “fingerprint” for identifying substances. The device can be made portable; it is fast, safe for the public, does not require human involvement, is cost effective, and most of all, does not require ingestion of a suspicious substance into an instrument. Various embodiments are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Standoff detection of explosive substances at distances of up to 150 m

Anadi Mukherjee, Steven Von der Porten, and C. Kumar N. Patel
Appl. Opt. 49(11) 2072-2078 (2010)

Explosives detection with a frequency modulation spectrometer

H. Riris, C. B. Carlisle, D. F. McMillen, and D. E. Cooper
Appl. Opt. 35(24) 4694-4704 (1996)

Challenge of false alarms in nitroaromatic explosive detection—a detection device based on surface-enhanced Raman spectroscopy

Hainer Wackerbarth, Lars Gundrum, Christian Salb, Konstantin Christou, and Wolfgang Viöl
Appl. Opt. 49(23) 4367-4371 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription