Abstract

Differential reflectometry (DR) is an effective tool to supplement existing explosives detection systems thus making the combined unit more effective than one tool alone. It is an optical technique in which the light beam (UV) emanates from an extended distance onto the substance under investigation, thus rendering it to be a standoff method. DR allows the measurement of the energies that electrons absorb from photons as they are raised into higher, allowed energy states. These electron transitions serve as a “fingerprint” for identifying substances. The device can be made portable; it is fast, safe for the public, does not require human involvement, is cost effective, and most of all, does not require ingestion of a suspicious substance into an instrument. Various embodiments are presented.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yinon and S. Zitrin, The Analysis of Explosives, Vol. 3 (Pergamon, 1981).
  2. S. D. Huang, L. Kolaitis, and D. Lubman, "Detection of explosives using laser desorption on ion mobility mass spectrometry/mass spectrometry," Appl. Spectrosc. 41, 1371-1376 (1987).
    [CrossRef]
  3. D. S. Moore, "Instrumentation for trace detection of high explosives," Rev. Sci. Instrum. 75, 2499-2512 (2004).
    [CrossRef]
  4. J. Yinon, "Detection of hidden explosives: an overview," Am. Lab. 38, 18-23 (2006).
  5. J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).
  6. J. Yinon, "Field detection and monitoring of explosives," Trends Analyt. Chem. 21, 292-301 (2002).
    [CrossRef]
  7. R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
    [CrossRef]
  8. R. E. Hummel, "Differential reflectance spectroscopy in analysis of surfaces," Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 9047-9071.
  9. R. E. Hummel, "Differential reflectometry and its application to the study of alloys, ordering, corrosion, and surface properties," Phys. Status Solidi A 76, 11-44 (1983).
    [CrossRef]
  10. R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
    [CrossRef]
  11. R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer-Verlag, 2001).

2006 (3)

R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
[CrossRef]

J. Yinon, "Detection of hidden explosives: an overview," Am. Lab. 38, 18-23 (2006).

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

2004 (1)

D. S. Moore, "Instrumentation for trace detection of high explosives," Rev. Sci. Instrum. 75, 2499-2512 (2004).
[CrossRef]

2002 (1)

J. Yinon, "Field detection and monitoring of explosives," Trends Analyt. Chem. 21, 292-301 (2002).
[CrossRef]

2001 (1)

R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer-Verlag, 2001).

2000 (1)

R. E. Hummel, "Differential reflectance spectroscopy in analysis of surfaces," Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 9047-9071.

1987 (1)

1983 (1)

R. E. Hummel, "Differential reflectometry and its application to the study of alloys, ordering, corrosion, and surface properties," Phys. Status Solidi A 76, 11-44 (1983).
[CrossRef]

1981 (1)

J. Yinon and S. Zitrin, The Analysis of Explosives, Vol. 3 (Pergamon, 1981).

1978 (1)

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Andrews, J. B.

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Barat, R.

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

Enderlein, R.

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Federici, J.

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

Fuller, A.

R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
[CrossRef]

Gary, D.

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

Holloway, P.

R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
[CrossRef]

Huang, S. D.

Hummel, R. E.

R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
[CrossRef]

R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer-Verlag, 2001).

R. E. Hummel, "Differential reflectance spectroscopy in analysis of surfaces," Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 9047-9071.

R. E. Hummel, "Differential reflectometry and its application to the study of alloys, ordering, corrosion, and surface properties," Phys. Status Solidi A 76, 11-44 (1983).
[CrossRef]

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Kolaitis, L.

Lubman, D.

Michalopoulou, Z. H.

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

Moore, D. S.

D. S. Moore, "Instrumentation for trace detection of high explosives," Rev. Sci. Instrum. 75, 2499-2512 (2004).
[CrossRef]

Nastasi-Andrews, R. J.

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Schoellhorn, C.

R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
[CrossRef]

Shanley, C. W.

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Yinon, J.

J. Yinon, "Detection of hidden explosives: an overview," Am. Lab. 38, 18-23 (2006).

J. Yinon, "Field detection and monitoring of explosives," Trends Analyt. Chem. 21, 292-301 (2002).
[CrossRef]

J. Yinon and S. Zitrin, The Analysis of Explosives, Vol. 3 (Pergamon, 1981).

Zimdars, D.

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

Zitrin, S.

J. Yinon and S. Zitrin, The Analysis of Explosives, Vol. 3 (Pergamon, 1981).

Am. Lab. (2)

J. Yinon, "Detection of hidden explosives: an overview," Am. Lab. 38, 18-23 (2006).

J. Federici, R. Barat, D. Gary, Z. H. Michalopoulou, and D. Zimdars, "Standoff sensing of explosives using terahertz radiation," Am. Lab. 38, 28-33 (2006).

Appl. Phys. Lett. (1)

R. E. Hummel, A. Fuller, C. Schoellhorn, and P. Holloway, "Detection of explosive materials by differential reflection spectroscopy," Appl. Phys. Lett. 88, 1903-1905 (2006).
[CrossRef]

Appl. Spectrosc. (1)

Phys. Status Solidi A (1)

R. E. Hummel, "Differential reflectometry and its application to the study of alloys, ordering, corrosion, and surface properties," Phys. Status Solidi A 76, 11-44 (1983).
[CrossRef]

Phys. Status Solidi B (1)

R. Enderlein, R. E. Hummel, J. B. Andrews, R. J. Nastasi-Andrews, and C. W. Shanley, "Interpretation of compositional modulation spectra to determine some optical-properties of alloys," Phys. Status Solidi B 88, 173-178 (1978).
[CrossRef]

Rev. Sci. Instrum. (1)

D. S. Moore, "Instrumentation for trace detection of high explosives," Rev. Sci. Instrum. 75, 2499-2512 (2004).
[CrossRef]

Trends Analyt. Chem. (1)

J. Yinon, "Field detection and monitoring of explosives," Trends Analyt. Chem. 21, 292-301 (2002).
[CrossRef]

Other (3)

R. E. Hummel, "Differential reflectance spectroscopy in analysis of surfaces," Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (Wiley, 2000), pp. 9047-9071.

R. E. Hummel, Electronic Properties of Materials, 3rd ed. (Springer-Verlag, 2001).

J. Yinon and S. Zitrin, The Analysis of Explosives, Vol. 3 (Pergamon, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of one form of the differential reflectometer (Phase III instrument). The optical fibers consist of UV transmitting material ( SiO 2 ) provided by Ocean Optics. The short wave pass filter (cutoff wavelength 500   nm ) was bought from Newport. The CCD detector and spectrometer (QE 65000) were manufactured by Ocean Optics.

Fig. 2
Fig. 2

(Color online) Differential reflectogram of TNT crystals on carbon tape (taken with the Phase I DR).

Fig. 3
Fig. 3

Differential reflectograms of various, common substances in comparison to TNT. The individual curves have been staggered for clarity.

Fig. 4
Fig. 4

(Color online) Differential reflectograms of various vegetative substances in comparison to TNT. The measured grass is St. Augustine. Individual curves have been staggered for clarity.

Fig. 5
Fig. 5

(Color online) Differential reflectograms of TNT on various surfaces. Individual curves have been staggered for clarity. Note: The lower and upper threshold wavelengths of the 420   nm shoulder are essentially alike. The substrate designated as “fabric” is a cotton product.

Fig. 6
Fig. 6

(Color online) Schematic of the results of a curve recognition program that indicates the wavelength ranges in which various explosives display characteristic DR features. Inert substances are observed to be in the lower background of this diagram.

Fig. 7
Fig. 7

Schematic of a baggage scanner using the differential reflectometer principle, which is built into an x-ray scanner used in airports.

Fig. 8
Fig. 8

Schematic of a people scanner using the differential reflectometer principle.

Tables (1)

Tables Icon

Table 1 Comparison of Major Techniques for Explosives Detection a

Metrics