## Abstract

Generation and effects of atmospherically propagated electromagnetic pulses (EMPs)
initiated by photoelectrons ejected by the high density and temperature target surface plasmas from multiterawatt laser pulses are analyzed. These laser radiation pulse interactions can significantly increase noise levels, thereby obscuring data (sometimes totally) and may even damage sensitive probe and detection instrumentation. Noise effects from high energy density (approximately multiterawatt) laser pulses
$(\sim 300\u2013400\text{\hspace{0.17em} ps}$ pulse widths)
interacting with thick
$\left(\sim 1\text{\hspace{0.17em} mm}\right)$ metallic and dielectric solid targets and
dielectric–metallic powder mixtures are interpreted as transient resonance radiation associated with surface charge fluctuations on the target chamber that functions as a radiating antenna. Effective solutions that minimize atmospheric EMP effects on internal and proximate electronic and electro-optical equipment external to the system based on systematic measurements using Moebius loop antennas, interpretations of signal periodicities, and dissipation indicators determining transient noise origin characteristics from target emissions are described.
Analytic models for the effect of target chamber resonances and associated noise current and temperature in a probe diode laser are described.

© 2007 Optical Society of America

Full Article |

PDF Article
### Equations (23)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${{I}_{n}}^{2}=2qidf,$$
(2)
$${{I}_{n}}^{2}\approx 4KT\text{\hspace{0.17em}}\frac{df}{R}\text{,}$$
(3)
$${{V}_{n}}^{2}={{I}_{n}}^{2}{R}^{2}\approx 4KTRdf.$$
(4)
$${P}_{T}={{I}_{n}}^{2}R.$$
(5)
$$P=\eta h\text{\hspace{0.17em}}\frac{f}{q}\left({I}_{d}-{I}_{t}\right)\text{,}$$
(6)
$$P\prime =\eta h\text{\hspace{0.17em}}\frac{f}{q}\left({I}_{d}-{I}_{t}\right)+{P}_{n}\text{,}$$
(7)
$${P}_{n}={\eta}_{n}h\text{\hspace{0.17em}}\frac{f}{q}\text{\hspace{0.17em}}{I}_{n}\text{,}$$
(8)
$${\eta}_{n}=\eta \text{\hspace{0.17em}}\frac{{I}_{n}}{{I}_{d}}.$$
(9)
$$P\prime =\eta h\text{\hspace{0.17em}}\frac{f}{q}\left({I}_{d}-{I}_{t}\right)+{\eta}_{n}h\text{\hspace{0.17em}}\frac{f}{q}\text{\hspace{0.17em}}{I}_{n},$$
(10)
$$P\prime =\eta h\text{\hspace{0.17em}}\frac{f}{q}\left({I}_{d}-{I}_{t}+\frac{{{I}_{n}}^{2}}{{I}_{d}}\right).$$
(11)
$${{I}_{n}}^{2}=2qidf,$$
(12)
$$P\prime =\eta h\text{\hspace{0.17em}}\frac{f}{q}\left({I}_{d}-{I}_{t}+\frac{2qidf}{{I}_{d}}\right).$$
(14)
$$P\prime =\eta h\text{\hspace{0.17em}}\frac{f}{q}\left({I}_{d}-{I}_{t}+\frac{2{q}^{2}{\mathit{v}}_{\mathit{\text{e}}}\mathit{\text{n}}df}{{I}_{d}}\right).$$
(15)
$${{I}_{n}}^{2}=\frac{4hvdf}{R\text{\hspace{0.17em} exp}\left(\frac{hf}{KT}-1\right)}.$$
(16)
$${{I}_{n}}^{2}\approx 4KT\text{\hspace{0.17em}}\frac{df}{R},$$
(17)
$${{V}_{n}}^{2}={{I}_{n}}^{2}{R}^{2}\approx 4KTRdf.$$
(18)
$${P}_{T}={I}_{n}{V}_{n}=4KTdf,$$
(19)
$${P}_{T}={{I}_{n}}^{2}R=4KTdf.$$
(20)
$$Q=1/4\epsilon {\left|E\right|}^{2}V\text{\hspace{0.17em}}\frac{\omega}{P}$$
(21)
$$E=\sqrt{\frac{4QP}{\epsilon V\omega}}.$$
(22)
$$Q=\frac{\omega}{\delta \omega},$$
(23)
$$\delta \omega \delta t\approx 1/2.$$