Abstract

The first realization of a reflective 50/50 beam splitter based on a dielectric diffraction grating suitable for high-power laser interferometers is reported. The beam splitter is designed to operate at a wavelength of 1064  nm and in s polarization. To minimize the performance degradation of the device that is due to fabrication fluctuations, during the design process special attention was paid to achieve high fabrication tolerances especially of groove width and depth. Applying this beam splitter to high-power laser interferometers, such as future gravitational wave detectors, will avoid critical thermal lensing effects and allow for the free choice of substrate materials.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Hild, H. Lück, W. Winkler, K. Strain, H. Grote, J. Smith, M. Malec, M. Hewitson, B. Willke, J. Hough, and K. Danzmann, "Measurement of a low-absorption sample of OH-reduced fused silica," Appl. Opt. 45, 7269-7272 (2006).
    [CrossRef] [PubMed]
  2. R. W. P. Drever, "Concepts for extending the ultimate sensitivity of interferometric gravitational wave detectors using non-transmissive optics with diffractive or holographic coupling," in Proceedings of the Seventh Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, R.T.Jantzen, G.M.Keiser, and R.Ruffini, eds. (World Scientific, 1996), pp. 1401-1406.
  3. S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, "Test mass materials for a new generation of gravitational wave detectors," Proc. SPIE 4856, 292-297 (2003).
    [CrossRef]
  4. K. Sun and R. L. Byer, "All-reflective Michelson, Sagnac, and Fabry-Perot interferometers based on grating beam splitters," Opt. Lett. 23, 567-569 (1998).
    [CrossRef]
  5. A. Bunkowski, O. Burmeister, T. Clausnitzer, E.-B. Kley, A. Tünnermann, K. Danzmann, and R. Schnabel, "Optical characterization of ultrahigh diffraction efficiency gratings," Appl. Opt. 45, 5795-5799 (2006).
    [CrossRef] [PubMed]
  6. J. Turunen, "Diffraction theory of microrelief gratings," in Micro-optics, H. P. Herzig, ed. (Taylor & Francis, 1997), pp. 31-52.
  7. T. Clausnitzer, E.-B. Kley, A. Tünnermann, A. Bunkowski, O. Burmeister, K. Danzmann, R. Schnabel, S. Gliech, and A. Duparré, "Ultra low-loss low-efficiency diffraction gratings," Opt. Express 13, 4370-4378 (2005).
    [CrossRef] [PubMed]
  8. S. Fahr, "Gitter für die interferometrische Gravitationswellendetektion,"Diploma thesis (Friedrich-Schiller-Universität Jena, 2006); http://www.db-thueringen.de/servlets/DocumentServlet?id=6869.

2006

2005

2003

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, "Test mass materials for a new generation of gravitational wave detectors," Proc. SPIE 4856, 292-297 (2003).
[CrossRef]

1998

Appl. Opt.

Opt. Express

Opt. Lett.

Proc. SPIE

S. Rowan, R. L. Byer, M. M. Fejer, R. K. Route, G. Cagnoli, D. R. Crooks, J. Hough, P. H. Sneddon, and W. Winkler, "Test mass materials for a new generation of gravitational wave detectors," Proc. SPIE 4856, 292-297 (2003).
[CrossRef]

Other

J. Turunen, "Diffraction theory of microrelief gratings," in Micro-optics, H. P. Herzig, ed. (Taylor & Francis, 1997), pp. 31-52.

S. Fahr, "Gitter für die interferometrische Gravitationswellendetektion,"Diploma thesis (Friedrich-Schiller-Universität Jena, 2006); http://www.db-thueringen.de/servlets/DocumentServlet?id=6869.

R. W. P. Drever, "Concepts for extending the ultimate sensitivity of interferometric gravitational wave detectors using non-transmissive optics with diffractive or holographic coupling," in Proceedings of the Seventh Marcel Grossman Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories, R.T.Jantzen, G.M.Keiser, and R.Ruffini, eds. (World Scientific, 1996), pp. 1401-1406.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) (a) Geometric details that describe the grating and enter the simulations. (b) Schematic of a reflection grating based on dielectric materials, e.g., fused silica and tantalum pentoxide.

Fig. 2
Fig. 2

(Color online) Grating period and angle of incidence restricted to the shaded area to achieve a diffractive beam splitter with two diffraction orders.

Fig. 3
Fig. 3

(Color online) Colored volume marks parameter configurations of the grating profile that provide a 50 / 50 splitting ratio for one angle of incidence. The thickness of the top layer was chosen to be 335   nm .

Fig. 4
Fig. 4

(Color online) Simulated diffraction efficiency in the 0th order for the proposed grating beam splitter that shows sufficient tolerance of its performance of variations of groove width and depth.

Fig. 5
Fig. 5

(Color online) Calculated and measured diffraction efficiencies of the 1 st and 0th order.

Equations (53)

Equations on this page are rendered with MathJax. Learn more.

50 / 50
1064   nm
< 1 .5%
Ta 2 O 5
n = 2.05
135   nm
SiO 2
n = 1.44
200   nm
1064   nm
SiO 2
Ta 2 O 5
n out sin ( φ m ) = n inc sin ( φ inc ) + m λ / d ,
n inc
n out
φ inc
φ m
1 st
| sin ( φ m ) | > 1
m < 1
m > 0
( n out > n inc )
1 st
1 st
1
SiO 2
( t top )
1100   nm
50   nm
t t o p
800   nm
20   nm
20   nm
t top
SiO 2
10   nm
50 / 50
t top = 335   nm
t top
t top
t top = 596   nm + 1.18 × d ,
d = λ sin φ inc + 1 sin 2 φ inc
790   nm
t top = 335 n m
300   nm
425   nm
1 st
470   nm
530   nm
50 / 50
50 / 50
335   nm
1 st

Metrics