Abstract

A hybrid antireflective coating combining homogeneous layers and linear gradient refractive index layers has been deposited using different techniques. The samples were analyzed optically based on spectrophotometric and spectroscopic ellipsometry measurements under different angles of incidence in order to precisely characterize the coatings. The Lorentz–Lorenz model has been used to calculate the refractive index of material mixtures in gradient and constant index layers of the coating. The obtained refractive index profiles have been compared with the targeted ones to detect errors in processes of deposition.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Piegari and G. Emilliani, "Analysis of inhomogeneous thin films by spectrophotometric measurements," Thin Solid Films 171, 243-250 (1989).
    [CrossRef]
  2. G. Parjadis de Lariviere, J. M. Frigerio, J. Rivory, and F. Abeles, "Estimate of the degree of inhomogeneity of the refractive index of dielectric films from spectroscopic ellipsometry," Appl. Opt. 31, 6056-6061 (1992).
    [CrossRef]
  3. P. Chindaudom and K. Vedam, "Characterization of inhomogeneous transparent substrates by spectroscopic ellipsometry: refractive indices n(λ) of some fluoride-coating materials," Appl. Opt. 33, 2664-2671 (1994).
    [CrossRef] [PubMed]
  4. V. Janicki and H. Zorc, "Refractive index profiling of CeO2 thin films using reverse engineering methods," Thin Solid Films 413, 198-202 (2002).
    [CrossRef]
  5. D. Franta, I. Ohlidal, D. Munzar, J. Hora, K. Navratil, C. Manfredotti, F. Fizzotti, and E. Vittone, "Complete optical characterization of imperfect hydrogenated amorphous silicon layers by spectroscopic ellipsometry and spectroscopic reflectometry," Thin Solid Films 343-344, 295-298 (1999).
    [CrossRef]
  6. D. Franta and I. Ohlidal, "Optical characterization of inhomogeneous thin films of ZrO2 by spectroscopic ellipsometry and spectroscopic reflectometry," Surf. Interface Anal. 30, 574-579 (2000).
    [CrossRef]
  7. K. Vedam, P. J. McMarr, and J. Narayan, "Nondestructive depth profiling by spectroscopic ellipsometry," Appl. Phys. Lett. 47, 339-341 (1985).
    [CrossRef]
  8. R. Leitel, O. Stenzel, S. Wilbrandt, D. Gäbler, V. Janicki, and N. Kaiser, "Optical and nonoptical characterization of Nb2O5-SiO2 compositional graded-index layers and rugate structures," Thin Solid Films 497, 135-141 (2006).
    [CrossRef]
  9. V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. Tikhonravov, M. Trubetskov, and T. Amotchkina, "Hybrid optical coating design for omnidirectional antireflection purposes," J. Opt. A Pure Appl. Opt. 7, L9-L12 (2005).
    [CrossRef]
  10. V. Janicki, D. Gäbler, S. Wilbrandt, R. Leitel, O. Stenzel, N. Kaiser, M. Lappschies, B. Görtz, D. Ristau, C. Rickers, and M. Vergöhl, "Deposition and spectral performance of an inhomogeneous wide-angular antireflective coating," Appl. Opt. 45, 7851-7857 (2006).
    [CrossRef] [PubMed]
  11. S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, "A general-purpose software for the optical characterization of thin films: specific features for microelectronic applications," Solid-State Electron. 45, 703-709 (2001).
    [CrossRef]
  12. D. A. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
    [CrossRef]
  13. L. Lorenz, "Über die Refractionsconstante," Ann. Phys. 11, 70-103 (1880).
  14. J. C. Maxwell Garnett, "Colors in metal glasses and metallic films," Philos. Trans. R. Soc. London Ser. A 203, 385-420 (1904).
    [CrossRef]
  15. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, "New optimization algorithm for the synthesis of rugate optical coatings," Appl. Opt. 45, 1515-1524 (2006).
    [CrossRef] [PubMed]
  16. X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
    [CrossRef]
  17. H. Berning, Physics of Thin Films (Academic, 1963), Vol. 1, pp. 69-121.
  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).
  19. M. Lappschies, B. Görtz, and D. Ristau, "Application of optical broadband monitoring to quasi-rugate filters by ion beam sputtering," Appl. Opt. 45, 1502-1506 (2006).
    [CrossRef] [PubMed]
  20. M. Lappschies, B. Görtz, and D. Ristau, "Optical monitoring of rugate filters," Proc. SPIE 5963, 1Z1 (2005).

2006 (4)

2005 (2)

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. Tikhonravov, M. Trubetskov, and T. Amotchkina, "Hybrid optical coating design for omnidirectional antireflection purposes," J. Opt. A Pure Appl. Opt. 7, L9-L12 (2005).
[CrossRef]

M. Lappschies, B. Görtz, and D. Ristau, "Optical monitoring of rugate filters," Proc. SPIE 5963, 1Z1 (2005).

2002 (1)

V. Janicki and H. Zorc, "Refractive index profiling of CeO2 thin films using reverse engineering methods," Thin Solid Films 413, 198-202 (2002).
[CrossRef]

2001 (1)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, "A general-purpose software for the optical characterization of thin films: specific features for microelectronic applications," Solid-State Electron. 45, 703-709 (2001).
[CrossRef]

2000 (1)

D. Franta and I. Ohlidal, "Optical characterization of inhomogeneous thin films of ZrO2 by spectroscopic ellipsometry and spectroscopic reflectometry," Surf. Interface Anal. 30, 574-579 (2000).
[CrossRef]

1999 (2)

D. Franta, I. Ohlidal, D. Munzar, J. Hora, K. Navratil, C. Manfredotti, F. Fizzotti, and E. Vittone, "Complete optical characterization of imperfect hydrogenated amorphous silicon layers by spectroscopic ellipsometry and spectroscopic reflectometry," Thin Solid Films 343-344, 295-298 (1999).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

1994 (1)

1992 (2)

1989 (1)

A. Piegari and G. Emilliani, "Analysis of inhomogeneous thin films by spectrophotometric measurements," Thin Solid Films 171, 243-250 (1989).
[CrossRef]

1985 (1)

K. Vedam, P. J. McMarr, and J. Narayan, "Nondestructive depth profiling by spectroscopic ellipsometry," Appl. Phys. Lett. 47, 339-341 (1985).
[CrossRef]

1963 (1)

H. Berning, Physics of Thin Films (Academic, 1963), Vol. 1, pp. 69-121.

1935 (1)

D. A. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
[CrossRef]

1904 (1)

J. C. Maxwell Garnett, "Colors in metal glasses and metallic films," Philos. Trans. R. Soc. London Ser. A 203, 385-420 (1904).
[CrossRef]

1880 (1)

L. Lorenz, "Über die Refractionsconstante," Ann. Phys. 11, 70-103 (1880).

Ann. Phys. (2)

D. A. Bruggeman, "Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen," Ann. Phys. 24, 636-679 (1935).
[CrossRef]

L. Lorenz, "Über die Refractionsconstante," Ann. Phys. 11, 70-103 (1880).

Appl. Opt. (5)

Appl. Phys. Lett. (1)

K. Vedam, P. J. McMarr, and J. Narayan, "Nondestructive depth profiling by spectroscopic ellipsometry," Appl. Phys. Lett. 47, 339-341 (1985).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

V. Janicki, S. Wilbrandt, O. Stenzel, D. Gäbler, N. Kaiser, A. Tikhonravov, M. Trubetskov, and T. Amotchkina, "Hybrid optical coating design for omnidirectional antireflection purposes," J. Opt. A Pure Appl. Opt. 7, L9-L12 (2005).
[CrossRef]

Philos. Trans. R. Soc. London (1)

J. C. Maxwell Garnett, "Colors in metal glasses and metallic films," Philos. Trans. R. Soc. London Ser. A 203, 385-420 (1904).
[CrossRef]

Proc. SPIE (1)

M. Lappschies, B. Görtz, and D. Ristau, "Optical monitoring of rugate filters," Proc. SPIE 5963, 1Z1 (2005).

Solid-State Electron. (1)

S. Bosch, J. Ferré-Borrull, and J. Sancho-Parramon, "A general-purpose software for the optical characterization of thin films: specific features for microelectronic applications," Solid-State Electron. 45, 703-709 (2001).
[CrossRef]

Surf. Interface Anal. (1)

D. Franta and I. Ohlidal, "Optical characterization of inhomogeneous thin films of ZrO2 by spectroscopic ellipsometry and spectroscopic reflectometry," Surf. Interface Anal. 30, 574-579 (2000).
[CrossRef]

Thin Solid Films (5)

A. Piegari and G. Emilliani, "Analysis of inhomogeneous thin films by spectrophotometric measurements," Thin Solid Films 171, 243-250 (1989).
[CrossRef]

X. Wang, H. Masumoto, Y. Someno, and T. Hirai, "Microstructure and optical properties of amorphous TiO2-SiO2 composite films synthesized by helicon plasma sputtering," Thin Solid Films 338, 105-109 (1999).
[CrossRef]

R. Leitel, O. Stenzel, S. Wilbrandt, D. Gäbler, V. Janicki, and N. Kaiser, "Optical and nonoptical characterization of Nb2O5-SiO2 compositional graded-index layers and rugate structures," Thin Solid Films 497, 135-141 (2006).
[CrossRef]

V. Janicki and H. Zorc, "Refractive index profiling of CeO2 thin films using reverse engineering methods," Thin Solid Films 413, 198-202 (2002).
[CrossRef]

D. Franta, I. Ohlidal, D. Munzar, J. Hora, K. Navratil, C. Manfredotti, F. Fizzotti, and E. Vittone, "Complete optical characterization of imperfect hydrogenated amorphous silicon layers by spectroscopic ellipsometry and spectroscopic reflectometry," Thin Solid Films 343-344, 295-298 (1999).
[CrossRef]

Other (2)

H. Berning, Physics of Thin Films (Academic, 1963), Vol. 1, pp. 69-121.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optimized models of refractive index profiles and the original designs that were used as starting models.

Fig. 2
Fig. 2

Spectral characteristics of the models compared with the measured spectra of the sample deposited by electron beam evaporation. Spectra of the design have been added for comparison. The back side of the substrate remained uncoated.

Fig. 3
Fig. 3

Spectral characteristics of the models compared with the measured spectra of the sample deposited by radio-frequency sputtering. Spectra of the design have been added for comparison. The back side of the substrate remained uncoated.

Fig. 4
Fig. 4

Spectral characteristics of the models compared with the measured spectra of the sample deposited ion beam sputtering. Spectra of the design have been added for comparison. The back side of the substrate remained uncoated.

Tables (4)

Tables Icon

Table 1 Dispersion Parameters and Material Refractive Indices a

Tables Icon

Table 2 EBE Discrepancies from the Design (err d , err n ) a

Tables Icon

Table 3 RFS Discrepancies From the Design (err d , err n ) a

Tables Icon

Table 4 IBS Discrepancies from the Design (err d , err n ) a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f H i = f H start + f H end f H start N sublayer ( i 1 2 ) .
ε eff 1 ε eff + 2 = f L ε L 1 ε L + 2 + f H ε H 1 ε H + 2 ,
χ 2 = 1 N m 1 j = 1 N s k = 1 N j ( y k j y j ( x k ; P 1 ,  …  ,   P m ) σ k j ) 2 ,
δ P i = Δ χ 2 C i i ,
α i j = ( N m 1 ) 2 χ 2 P i P j .

Metrics