Abstract

A metal layer formed on the backside of InGaN∕sapphire-based light-emitting diodes deteriorates the inherent optical power output. An experimental approach of a suspended die is employed to study the effects of such metal layers via a direct comparison in radiant flux from a discrete die with and without a reflector. A sphere package that employs no reflector is proposed and fabricated. Light extraction of the sphere design is discussed; a light source in the sphere package would not have to be either an ideal point or placed at the center of the sphere, due to a finite critical angle at the sphere∕air interface.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, "Development of high-bright and pure-white LED lamps," J. Light Visual Environ. 22, 2-5 (1998).
    [CrossRef]
  2. S. J. Lee, "Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes," Opt. Eng. 45, 014601-14 (2006).
  3. Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221-2223 (2003).
    [CrossRef]
  4. F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, "Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes," Appl. Phys. Lett. 64, 2839-2841 (1994).
    [CrossRef]
  5. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, "High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency," Appl. Phys. Lett. 75, 2365-2367 (1999).
    [CrossRef]
  6. U. Strauss, H.-J. Lugauer, A. Weimar, J. Baur, G. Brüderl, D. Eisert, F. Kühn, U. Zehnder, and V. Härle, "Progress of InGaN light emitting diodes on SiC," Phys. Status Solidi C 0, 276-279 (2002).
    [CrossRef]
  7. T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, "Cone-shaped surface GaN-based light-emitting diodes," Phys. Status Solidi C 2, 2836-2840 (2005).
    [CrossRef]
  8. A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, and C. Weisbuch, "Photonic crystal laser lift-off GaN light-emitting diodes," Appl. Phys. Lett. 88, 133514-3 (2006).
    [CrossRef]
  9. M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, "InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode," Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
    [CrossRef]
  10. J. K. Kim, J.-Q. Xi, H. Luo, and E. Fred Schubert, "Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with A1-based omnidirectional reflector having NiZn/Ag microcontacts," Appl. Phys. Lett. 89, 141123-3 (2006).
    [CrossRef]
  11. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003), p. 120.
  12. Ref. , p. 90.
  13. C. Winnewisser, J. Schneider, M. Börsch, and H. W. Rotter, "In situ temperature measurements via ruby R lines of sapphire substrate based InGaN light emitting diodes during operation," J. Appl. Phys. 89, 3091-3094 (2001).
    [CrossRef]

2006

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, and C. Weisbuch, "Photonic crystal laser lift-off GaN light-emitting diodes," Appl. Phys. Lett. 88, 133514-3 (2006).
[CrossRef]

J. K. Kim, J.-Q. Xi, H. Luo, and E. Fred Schubert, "Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with A1-based omnidirectional reflector having NiZn/Ag microcontacts," Appl. Phys. Lett. 89, 141123-3 (2006).
[CrossRef]

2005

T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, "Cone-shaped surface GaN-based light-emitting diodes," Phys. Status Solidi C 2, 2836-2840 (2005).
[CrossRef]

2003

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221-2223 (2003).
[CrossRef]

2002

U. Strauss, H.-J. Lugauer, A. Weimar, J. Baur, G. Brüderl, D. Eisert, F. Kühn, U. Zehnder, and V. Härle, "Progress of InGaN light emitting diodes on SiC," Phys. Status Solidi C 0, 276-279 (2002).
[CrossRef]

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, "InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode," Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
[CrossRef]

2001

C. Winnewisser, J. Schneider, M. Börsch, and H. W. Rotter, "In situ temperature measurements via ruby R lines of sapphire substrate based InGaN light emitting diodes during operation," J. Appl. Phys. 89, 3091-3094 (2001).
[CrossRef]

1999

R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, "High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency," Appl. Phys. Lett. 75, 2365-2367 (1999).
[CrossRef]

1998

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, "Development of high-bright and pure-white LED lamps," J. Light Visual Environ. 22, 2-5 (1998).
[CrossRef]

1994

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, "Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes," Appl. Phys. Lett. 64, 2839-2841 (1994).
[CrossRef]

Appl. Phys. Lett.

Y. C. Shen, J. J. Wierer, M. R. Krames, M. J. Ludowise, M. S. Misra, F. Ahmed, A. Y. Kim, G. O. Mueller, J. C. Bhat, S. A. Stockman, and P. S. Martin, "Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes," Appl. Phys. Lett. 82, 2221-2223 (2003).
[CrossRef]

F. A. Kish, F. M. Steranka, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, "Very high-efficiency semiconductor wafer-bonded transparent-substrate (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes," Appl. Phys. Lett. 64, 2839-2841 (1994).
[CrossRef]

R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I.-H. Tan, P. Grillot, N. F. Gardner, H. C. Chui, J.-W. Huang, S. A. Stockman, F. A. Kish, and M. G. Craford, "High-power truncated-inverted-pyramid (AlxGa1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency," Appl. Phys. Lett. 75, 2365-2367 (1999).
[CrossRef]

A. David, T. Fujii, B. Moran, S. Nakamura, S. P. DenBaars, and C. Weisbuch, "Photonic crystal laser lift-off GaN light-emitting diodes," Appl. Phys. Lett. 88, 133514-3 (2006).
[CrossRef]

J. K. Kim, J.-Q. Xi, H. Luo, and E. Fred Schubert, "Enhanced light-extraction in GaInN near-ultraviolet light-emitting diode with A1-based omnidirectional reflector having NiZn/Ag microcontacts," Appl. Phys. Lett. 89, 141123-3 (2006).
[CrossRef]

J. Appl. Phys.

C. Winnewisser, J. Schneider, M. Börsch, and H. W. Rotter, "In situ temperature measurements via ruby R lines of sapphire substrate based InGaN light emitting diodes during operation," J. Appl. Phys. 89, 3091-3094 (2001).
[CrossRef]

J. Light Visual Environ.

K. Bando, K. Sakano, Y. Noguchi, and Y. Shimizu, "Development of high-bright and pure-white LED lamps," J. Light Visual Environ. 22, 2-5 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

M. Yamada, T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, "InGaN-based near-ultraviolet and blue-light-emitting diodes with high external quantum efficiency using a patterned sapphire substrate and a mesh electrode," Jpn. J. Appl. Phys. 41, L1431-L1433 (2002).
[CrossRef]

Opt. Eng.

S. J. Lee, "Study of photon extraction efficiency in InGaN light-emitting diodes depending on chip structures and chip-mount schemes," Opt. Eng. 45, 014601-14 (2006).

Phys. Status Solidi C

U. Strauss, H.-J. Lugauer, A. Weimar, J. Baur, G. Brüderl, D. Eisert, F. Kühn, U. Zehnder, and V. Härle, "Progress of InGaN light emitting diodes on SiC," Phys. Status Solidi C 0, 276-279 (2002).
[CrossRef]

T. Fujii, A. David, Y. Gao, M. Iza, S. P. DenBaars, E. L. Hu, C. Weisbuch, and S. Nakamura, "Cone-shaped surface GaN-based light-emitting diodes," Phys. Status Solidi C 2, 2836-2840 (2005).
[CrossRef]

Other

E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, 2003), p. 120.

Ref. , p. 90.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of a suspended LED.

Fig. 2
Fig. 2

Suspended LEDs under operation (a) with evaporated Ag backcoating and (b) with Ag-paste backcoating. Note that the entire die is glowing in (b) while only the active area is bright in (a).

Fig. 3
Fig. 3

Sphere LED under operation.

Fig. 4
Fig. 4

Cross section of concentric spheres around the center O with radii r 1 and r 2 . The point A is on the outer sphere where the tangent at point B on the inner sphere intersects. The critical angle θ c is determined by the outer sphere material and free space (air).

Tables (2)

Tables Icon

Table 1 Effects of Backcoating on Suspended LEDs in Optical Output Power a

Tables Icon

Table 2 Conversion Factors for Different Packages a

Equations (79)

Equations on this page are rendered with MathJax. Learn more.

( 440 460   nm )
300   μm × 300   μm
100   μm
( 450   μm × 550   μm )
0.2 W   m 1 K 1
150   nm
5   mm
2.5   cm
2.5   cm
7.5   cm
50   cm
1   μW
7.5   cm
0.1   mW
50   cm
0.1   mW
1   mA
1   mA
0.01   V
1   mA
5   mA
20   mA
5   mA
5   mA
1   mA
1.1 / 0.6 2
1   mA
20   mA
2.7   mW
2   mA
22.7   mW
20   mA
1   mA
r 1
r 2
n 2
θ c
θ c
θ c
θ c = sin 1 1 n 2 .
r 1
r 1
( r 1 )
r 1
n 2 = 1.4
θ c
r 2 = 1.414 r 1 .
2.5   cm
P = P s 1
I = I 1
I 1 = 1   mA
P s 1 = a s 1 I 1 ,
a s 1
I 2
P s 2 = a s 2 I 2 ,
a s 2
I = I 1
P p 1 = a p 1 k I 1 ,
I = I 1
a p 1
a s 1
I 2
P p 2 = a p 2 k I 2 ,
a p 2
k p = P p 1 / P s 1 ,
a p 2 / a s 2 = ( P p 2 P s 1 ) / ( P p 1 P s 2 ) .
k q = P q 1 / P t 1 ,
a q 2 / a t 2 = ( P q 2 P t 1 ) / ( P q 1 P t 2 ) .
k q / k p = ( P q 1 / P p 1 ) ( P s 1 / P t 1 ) ,
a q 2 / a p 2 = [ ( P q 2 P p 1 ) / ( P q 1 P p 2 ) ] ( P t 1 / P s 1 ) .
P t 1 / P s 1
I 1
a s 2 / a s 1 = a t 2 / a t 1 .
a s 1 a t 1
( A l x G a 1 x ) 0.5 I n 0.5
( A l x G a 1 x ) 0.5 I n 0.5
r 1
r 2
θ c

Metrics