Abstract

A novel technique that enables coherent detection of spontaneous Brillouin scattering in the radio-frequency (<500 MHz) region with excellent long-term stability has been demonstrated for distributed measurements of temperature and strain in long fiber. An actively stabilized single-frequency Brillouin fiber laser with extremely low phase noise and intensity noise is used as a well-defined, frequency-shifted local oscillator for the heterodyne detection, yielding measurements of spontaneous Brillouin scattering with high frequency stability. Based on this approach, a highly stable real-time fiber sensor for distributed measurements of both temperature and strain over long fiber has been developed utilizing advanced digital signal processing techniques.

© 2007 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fiber," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
    [CrossRef]
  2. D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-914 (1989).
    [CrossRef]
  3. X. Bao, D. J. Webb, and D. A. Jackson, "22-km distributed temperature sensor using Brillouin gain in an optical fiber," Opt. Lett. 18, 552-554 (1993).
  4. H. H. Kee, G. P. Lees, and T. P. Newson, "All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering," Opt. Lett. 25, 695-697 (2000).
  5. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser," Opt. Commun. 152, 263-268 (1998).
    [CrossRef]
  6. K. Tsuji, K. Shimuzu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
    [CrossRef]
  7. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, "CW Brillouin laser," Appl. Phys. Lett. 28, 608-609 (1976).
    [CrossRef]
  8. S. P. Smith, F. Zarinetchi, and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt. Lett. 16, 393-395 (1991).
  9. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultra-narrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
    [CrossRef]
  10. J. Geng and S. Jiang, "Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers," Opt. Lett. 32, 11-13 (2007).
    [CrossRef]
  11. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, "Temperature and strain dependence of the power level and frequency for spontaneous Brillouin scattering in optical fibers," Opt. Lett. 22, 787-789 (1997).
  12. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, "100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
    [CrossRef]

2007 (1)

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultra-narrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
[CrossRef]

2004 (1)

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, "100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
[CrossRef]

2000 (1)

1998 (1)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser," Opt. Commun. 152, 263-268 (1998).
[CrossRef]

1997 (1)

1995 (1)

K. Tsuji, K. Shimuzu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
[CrossRef]

1993 (1)

1991 (1)

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fiber," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-914 (1989).
[CrossRef]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, "CW Brillouin laser," Appl. Phys. Lett. 28, 608-609 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, "CW Brillouin laser," Appl. Phys. Lett. 28, 608-609 (1976).
[CrossRef]

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-914 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultra-narrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
[CrossRef]

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fiber," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

K. Tsuji, K. Shimuzu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, "100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
[CrossRef]

Opt. Commun. (1)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser," Opt. Commun. 152, 263-268 (1998).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics