Abstract

A novel technique that enables coherent detection of spontaneous Brillouin scattering in the radio-frequency (<500  MHz) region with excellent long-term stability has been demonstrated for distributed measurements of temperature and strain in long fiber. An actively stabilized single-frequency Brillouin fiber laser with extremely low phase noise and intensity noise is used as a well-defined, frequency-shifted local oscillator for the heterodyne detection, yielding measurements of spontaneous Brillouin scattering with high frequency stability. Based on this approach, a highly stable real-time fiber sensor for distributed measurements of both temperature and strain over long fiber has been developed utilizing advanced digital signal processing techniques.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fiber," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
    [CrossRef]
  2. D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-914 (1989).
    [CrossRef]
  3. X. Bao, D. J. Webb, and D. A. Jackson, "22-km distributed temperature sensor using Brillouin gain in an optical fiber," Opt. Lett. 18, 552-554 (1993).
    [CrossRef] [PubMed]
  4. H. H. Kee, G. P. Lees, and T. P. Newson, "All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering," Opt. Lett. 25, 695-697 (2000).
    [CrossRef]
  5. V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser," Opt. Commun. 152, 263-268 (1998).
    [CrossRef]
  6. K. Tsuji, K. Shimuzu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
    [CrossRef]
  7. K. O. Hill, B. S. Kawasaki, and D. C. Johnson, "CW Brillouin laser," Appl. Phys. Lett. 28, 608-609 (1976).
    [CrossRef]
  8. S. P. Smith, F. Zarinetchi, and S. Ezekiel, "Narrow-linewidth stimulated Brillouin fiber laser and applications," Opt. Lett. 16, 393-395 (1991).
    [CrossRef] [PubMed]
  9. J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultra-narrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
    [CrossRef]
  10. J. Geng and S. Jiang, "Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers," Opt. Lett. 32, 11-13 (2007).
    [CrossRef]
  11. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, "Temperature and strain dependence of the power level and frequency for spontaneous Brillouin scattering in optical fibers," Opt. Lett. 22, 787-789 (1997).
    [CrossRef] [PubMed]
  12. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, "100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
    [CrossRef]

2007 (1)

2006 (1)

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultra-narrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
[CrossRef]

2004 (1)

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, "100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
[CrossRef]

2000 (1)

1998 (1)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser," Opt. Commun. 152, 263-268 (1998).
[CrossRef]

1997 (1)

1995 (1)

K. Tsuji, K. Shimuzu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
[CrossRef]

1993 (1)

1991 (1)

1989 (2)

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fiber," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-914 (1989).
[CrossRef]

1976 (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, "CW Brillouin laser," Appl. Phys. Lett. 28, 608-609 (1976).
[CrossRef]

Appl. Phys. Lett. (1)

K. O. Hill, B. S. Kawasaki, and D. C. Johnson, "CW Brillouin laser," Appl. Phys. Lett. 28, 608-609 (1976).
[CrossRef]

Electron. Lett. (1)

D. Culverhouse, F. Farahi, C. N. Pannel, and D. A. Jackson, "Potential of stimulated Brillouin scattering as sensing mechanism for distributed temperature sensors," Electron. Lett. 25, 913-914 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Horiguchi, T. Kurashima, and M. Tateda, "Tensile strain dependence of Brillouin frequency shift in silica optical fiber," IEEE Photon. Technol. Lett. 1, 107-108 (1989).
[CrossRef]

J. Geng, S. Staines, Z. Wang, J. Zong, M. Blake, and S. Jiang, "Highly stable low-noise Brillouin fiber laser with ultra-narrow spectral linewidth," IEEE Photon. Technol. Lett. 18, 1813-1815 (2006).
[CrossRef]

K. Tsuji, K. Shimuzu, T. Horiguchi, and Y. Koyamada, "Coherent optical frequency domain reflectometry for a long single-mode optical fiber using a coherent lightwave source and an external phase modulator," IEEE Photon. Technol. Lett. 7, 804-806 (1995).
[CrossRef]

Meas. Sci. Technol. (1)

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, "100 km distributed temperature sensor based on coherent detection of spontaneous Brillouin backscatter," Meas. Sci. Technol. 15, 1544-1547 (2004).
[CrossRef]

Opt. Commun. (1)

V. Lecoeuche, D. J. Webb, C. N. Pannell, and D. A. Jackson, "Brillouin based distributed fiber sensor incorporating a mode-locked Brillouin fiber ring laser," Opt. Commun. 152, 263-268 (1998).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Diagram of the novel distributed fiber temperature and strain sensor.

Fig. 2
Fig. 2

Spectral illustration for LO (local oscillator), launched pulsed laser, and SBS (spontaneous Brillouin scattering) in fiber.

Fig. 3
Fig. 3

Typical FFT (fast Fourier transform) spectrum of the Brillouin∕LO beat signal for launched laser pulses of 100   ns (upper trace) and 20   ns (lower trace). The data were averaged 5 times.

Fig. 4
Fig. 4

Relative Brillouin frequency shift (5000 averages taken in < 1   second ) for different fibers at different temperatures. The first section of double-cladding (DC) fiber was at room temperature (RT). The second section of SMF-28 fiber was placed in an oven. Three oven temperatures ( 32 ° C , 40 ° C , and 48 ° C ) were set up in three different days.

Fig. 5
Fig. 5

Relative Brillouin frequency shift (1024 averages taken in 1 second) as a function of distance. The sharp peak at 12.36   km corresponds to the 20   meter fiber section that was under tension.

Fig. 6
Fig. 6

Relative Brillouin frequency shift and intensity (in Log scale) of the scattered signal as a function of distance. Three sections of fiber in ovens are zoomed in as shown in two insets: 200   m starting at 10.55   km in an oven at 38.5 ° C , 30   m at 25.65   km in an oven 38.5 ° C , and 4.4   km at 25.73   km in an oven at 39.5 ° C . The rest of the sections of fiber are at room temperature ( 24 ° C ) .

Metrics