Abstract

The method of the single-longitudinal-mode (SLM) scan of a pulsed double-grating Ti:sapphire laser oscillator with the grazing incidence cavity configuration was proposed based on the analysis of the optical path length. The SLM scan was experimentally confirmed for this cavity configuration, where the second grating was rotated around an arbitrary point with the translational scan of a back mirror.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. T. Greenland, "Laser isotope separation," Contemp. Phys. 31, 405-424 (1990).
    [CrossRef]
  2. I. Matsushima, H. Yashiro, and T. Tomie, "10 kHz 40 W Ti:sapphire regenerative ring amplifier," Opt. Lett. 31, 2066-2068 (2006).
    [CrossRef] [PubMed]
  3. K. W. Kangas, D. D. Lowenthal, and C. H. Muller III, "Single-longitudinal-mode, tunable, pulsed Ti:sapphire laser oscillator," Opt. Lett. 14, 21-23 (1989).
    [CrossRef] [PubMed]
  4. K. Liu and M. G. Littman, "Novel geometry for singlemode scanning of tunable lasers," Opt. Lett. 6, 117-118 (1981).
    [CrossRef] [PubMed]
  5. A. Ogino, M. Katsuragawa, and K. Hakuta, "Single-frequency injection seeded pulse Ti:Al2O3 ring laser," Jpn. J. Appl. Phys. , Part 1 36, 5112-5115 (1997).
    [CrossRef]
  6. D. J. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, "Pulsed single mode laser oscillation in a new coupled cavity design," Opt. Commun. 146, 173-176 (1998).
    [CrossRef]
  7. M. G. Littman, "Single-mode operation of grazing-incidence pulsed dye laser," Opt. Lett. 3, 138-140 (1978).
    [CrossRef] [PubMed]
  8. T. D. Raymond, P. Esherrick, and A. V. Smith, "Widely tunable single-longitudinal-mode pulsed dye laser," Opt. Lett. 14, 1116-1118 (1989).
    [CrossRef] [PubMed]
  9. T. W. Hänsch, "Repetitively pulsed tunable dye laser for high resolution spectroscopy," Appl. Opt. 11, 895-898 (1972).
    [CrossRef] [PubMed]

2006

1998

D. J. Binks, D. K. Ko, L. A. W. Gloster, and T. A. King, "Pulsed single mode laser oscillation in a new coupled cavity design," Opt. Commun. 146, 173-176 (1998).
[CrossRef]

1997

A. Ogino, M. Katsuragawa, and K. Hakuta, "Single-frequency injection seeded pulse Ti:Al2O3 ring laser," Jpn. J. Appl. Phys. , Part 1 36, 5112-5115 (1997).
[CrossRef]

1990

P. T. Greenland, "Laser isotope separation," Contemp. Phys. 31, 405-424 (1990).
[CrossRef]

1989

1981

1978

1972

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Arrangement of the oscillator showing parameters used in the calculations. BM, back mirror; G1 and G2, gratings 1 and 2; L 1 and L 2 optical cavity length.

Fig. 2
Fig. 2

Calculated results of the (a) rotation angle change Δ ϕ , (b) optical path length difference Δ L 2 between gratings 1 and 2, and (c) relative displacement of the back mirror Δ L 1 for compensation as a function of laser wavelength change Δ λ .

Fig. 3
Fig. 3

Schematics of the experimental setup showing the cavity arrangement of double-grating oscillator.

Fig. 4
Fig. 4

Ring pattern taken with a 5   GHz etalon.

Fig. 5
Fig. 5

Experimental output signals for the cavity length correction corresponding to the displacement ( Δ L ) of the back mirror for the (a) positive and (b) negative wavelength scan.

Equations (55)

Equations on this page are rendered with MathJax. Learn more.

200   MHz
sin α + sin β = m λ / d ,
sin γ = m λ / 2 d ,
m
( m = m = 1 )
d
L = N ( λ / 2 ) ,
( α γ )
L 1
L 2
Δ ϕ
L 2
λ 740   nm
α 1 .55   rad
β 0 .339   rad
γ 0 .729   rad
d 556   nm
R 6.1   cm
L 1 3.1   cm
L 2 5.1   cm
Δ ϕ
Δ λ
( 740   nm )
Δ L 2
Δ λ
Δ L 1
0.5   in.
1800   lines / mm
50   mm
4   nm
6   mm × 10 .5 mm × 18   mm
10   Hz
10   ns
30   cm
1 2   mJ
40   mJ
1   m
5   GHz
772   nm
370   MHz
( 14 )
3.8   ns
120   MHz
18   s / GHz
0.1   nm
( Δ L )
740   nm
L 1
L 2
Δ ϕ
Δ L 2
Δ L 1
Δ λ
5   GHz
( Δ L )

Metrics