Abstract

Holographic femtosecond laser processing performs high-speed parallel processing using a computer-generated hologram (CGH) displayed on a liquid crystal spatial light modulator. A critical issue is to precisely control the intensities of the diffraction peaks of the CGH. We propose a method of compensating for the spatial frequency response in the design of CGH using the optimal-rotation-angle method. By applying the proposed method, the uniformity of the diffraction peaks was improved. We demonstrate holographic femtosecond laser processing with two-dimensional and three-dimensional parallelism.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Du, X. Liu, G. Kom, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
    [CrossRef]
  2. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, "Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm," Appl. Phys. Lett. 65, 1850-1852 (1994).
    [CrossRef]
  3. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, "Writing waveguides in glass with a femtosecond laser," Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  4. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
    [CrossRef]
  5. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
    [CrossRef]
  6. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  7. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
    [CrossRef]
  8. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
    [CrossRef]
  9. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, "Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses," Opt. Lett. 29, 1846-1848 (2004).
    [CrossRef] [PubMed]
  10. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
    [CrossRef]
  11. S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
    [CrossRef]
  12. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka, and K. Hirao, "Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements," Opt. Express 12, 1908-1915 (2004).
    [CrossRef] [PubMed]
  13. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
    [CrossRef]
  14. S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
    [CrossRef] [PubMed]
  15. N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, "Programmable focal spot shaping of amplified femtosecond laser pulses," Opt. Lett. 30, 1479-1481 (2005).
    [CrossRef] [PubMed]
  16. N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, "100-kHz diffraction-limited femtosecond laser micromachining," Appl. Phys. B 80, 27-30 (2005).
    [CrossRef]
  17. G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andrés, "High spatiotemporal resolution in multifocal processing with femtosecond laser pulses," Opt. Lett. 31, 2631-2633 (2006).
    [CrossRef] [PubMed]
  18. J. Bengtsson, "Kinoform design with an optimal-rotation-angle method," Appl. Opt. 33, 6879-6884 (1994).
    [CrossRef] [PubMed]
  19. R. Neubecker, G.-L. Oppo, B. Thuering, and T. Tschudi, "Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects," Phys. Rev. A 52, 791-808 (1994).
    [CrossRef]
  20. Y. Hayasaki, H. Yamamoto, and N. Nishida, "Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback," J. Opt. Soc. Am. B 17, 1211-1215 (2000).
    [CrossRef]
  21. Y. Hayasaki, S. Hara, H. Yamamoto, and N. Nishida, "Spatial and temporal properties of a nonlinear optical feedback system," Opt. Rev. 8, 343-347 (2001).
    [CrossRef]
  22. Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
    [CrossRef]
  23. D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating," Appl. Phys. A 82, 523-527 (2006).
    [CrossRef]
  24. D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Bump formation on a glass surface with a transparent coating using femtosecond laser processing," Appl. Phys. A 85, 39-43 (2006).
    [CrossRef]

2006 (4)

S. Hasegawa, Y. Hayasaki, and N. Nishida, "Holographic femtosecond laser processing with multiplexed phase Fresnel lenses," Opt. Lett. 31, 1705-1707 (2006).
[CrossRef] [PubMed]

G. Mínguez-Vega, J. Lancis, J. Caraquitena, V. Torres-Company, and P. Andrés, "High spatiotemporal resolution in multifocal processing with femtosecond laser pulses," Opt. Lett. 31, 2631-2633 (2006).
[CrossRef] [PubMed]

D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating," Appl. Phys. A 82, 523-527 (2006).
[CrossRef]

D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Bump formation on a glass surface with a transparent coating using femtosecond laser processing," Appl. Phys. A 85, 39-43 (2006).
[CrossRef]

2005 (4)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

N. Sanner, N. Huot, E. Audouard, C. Larat, J. P. Huignard, and B. Loiseaux, "Programmable focal spot shaping of amplified femtosecond laser pulses," Opt. Lett. 30, 1479-1481 (2005).
[CrossRef] [PubMed]

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, "100-kHz diffraction-limited femtosecond laser micromachining," Appl. Phys. B 80, 27-30 (2005).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

2004 (2)

2003 (2)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

2001 (1)

Y. Hayasaki, S. Hara, H. Yamamoto, and N. Nishida, "Spatial and temporal properties of a nonlinear optical feedback system," Opt. Rev. 8, 343-347 (2001).
[CrossRef]

2000 (1)

1999 (1)

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

1997 (2)

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

1996 (3)

1994 (4)

D. Du, X. Liu, G. Kom, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, "Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm," Appl. Phys. Lett. 65, 1850-1852 (1994).
[CrossRef]

J. Bengtsson, "Kinoform design with an optimal-rotation-angle method," Appl. Opt. 33, 6879-6884 (1994).
[CrossRef] [PubMed]

R. Neubecker, G.-L. Oppo, B. Thuering, and T. Tschudi, "Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects," Phys. Rev. A 52, 791-808 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (4)

B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Appl. Phys. A 63, 109-115 (1996).
[CrossRef]

S. Matsuo, S. Juodkazis, and H. Misawa, "Femtosecond laser microfabrication of periodic structures using a microlens array," Appl. Phys. A 80, 683-685 (2005).
[CrossRef]

D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating," Appl. Phys. A 82, 523-527 (2006).
[CrossRef]

D. Kawamura, A. Takita, Y. Hayasaki, and N. Nishida, "Bump formation on a glass surface with a transparent coating using femtosecond laser processing," Appl. Phys. A 85, 39-43 (2006).
[CrossRef]

Appl. Phys. B (1)

N. Sanner, N. Huot, E. Audouard, C. Larat, P. Laporte, and J. P. Huignard, "100-kHz diffraction-limited femtosecond laser micromachining," Appl. Phys. B 80, 27-30 (2005).
[CrossRef]

Appl. Phys. Lett. (7)

Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, "Variable holographic femtosecond laser processing by use of a spatial light modulator," Appl. Phys. Lett. 87, 031101 (2005).
[CrossRef]

K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329-3331 (1997).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, "Waveguide fabrication in phosphate glasses using femtosecond laser pulses," Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

D. Du, X. Liu, G. Kom, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071-3073 (1994).
[CrossRef]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, "Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm," Appl. Phys. Lett. 65, 1850-1852 (1994).
[CrossRef]

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, "Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses," Appl. Phys. Lett. 82, 2758-2760 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (6)

Opt. Rev. (2)

Y. Hayasaki, S. Hara, H. Yamamoto, and N. Nishida, "Spatial and temporal properties of a nonlinear optical feedback system," Opt. Rev. 8, 343-347 (2001).
[CrossRef]

Y. Igasaki, F. Li, N. Yoshida, H. Toyoda, T. Inoue, N. Mukohzaka, Y. Kobayashi, and T. Hara, "High efficiency-addressable phase-only spatial light modulator," Opt. Rev. 6, 339-344 (1999).
[CrossRef]

Phys. Rev. A (1)

R. Neubecker, G.-L. Oppo, B. Thuering, and T. Tschudi, "Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects," Phys. Rev. A 52, 791-808 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup.

Fig. 2
Fig. 2

(a) CGH for generating ten beams, (b) computed reconstruction of the CGH and the intensity profile, and (c) computed reconstruction of the CGH taking into account the spatial frequency response of the LCSLM and the intensity profile.

Fig. 3
Fig. 3

(a) CGH with compensation of spatial frequency response of the LCSLM, and (b) computed reconstruction of the CGH and the intensity profile.

Fig. 4
Fig. 4

(a) Optical reconstruction of CGH without compensation and the intensity profile, (b) its transmission microscope image, and (c) its AFM image. (d) Close-up view of the AFM image shown by the arrow in Fig. 4(c).

Fig. 5
Fig. 5

(a) Optical reconstruction of CGH with compensation and the intensity profile, (b) its transmission microscope image, and (c) its AFM image.

Fig. 6
Fig. 6

(a) Reflection microscope images of processed area for various irradiation energies without compensation. (b) Reflection microscope images of processed area for various irradiation energies with compensation. (c) Cavity diameter on the glass and the uniformity for irradiation energy. The crosses indicate the results using the CGH optimized without compensation. The filled circles indicate the results using the CGH optimized with compensation. The inset shows the SEM image of the cavity indicated by the arrow in (a). The double-headed arrow indicates the cavity diameter.

Fig. 7
Fig. 7

(a) Reflection microscope image and (b) scanning electron microscope images of the results of two-dimensional fabrication using five different CGHs.

Fig. 8
Fig. 8

(a) CGHs generating focal points at focal lengths of 1800, 2000, and 2400   mm , (b) optical reconstructions of the CGHs, and (c) transmission microscope images of 3-D fabrications using three CGHs.

Fig. 9
Fig. 9

(a) CGH having focal lengths of 1800, 2000, and 2400   mm in different areas, (b) optical reconstructions of the CGH, and (c) transmission microscope images of 3-D parallel fabrication using a CGH.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

U k m ( n ) = w m ( n ) A k m exp [ i φ k m + i φ k ( n ) ] ,
U m ( n ) = k U k m ( n ) = w m ( n ) A m exp [ i φ m ] ,
w m ( n + 1 ) = w m ( n ) [ I m ( d ) / ( A m ) 2 ] a ,
Δ l m = w m ( n + 1 ) { A k m cos [ φ m φ k m φ k ( n + 1 ) ] A k m cos [ φ m φ k m φ k ( n ) ] } .
m Δ l m = S 3 cos [ Δ φ k tan 1 ( S 2 / S 1 ) ] S 1 , if ( S 1 > 0 ) , = S 3 cos [ Δ φ k tan 1 ( S 2 / S 1 ) ] S 1 , otherwise ,
S 1 = m w m ( n + 1 ) A k m cos [ φ m φ k m φ k ( n ) ] ,
S 2 = m w m ( n + 1 ) A k m sin [ φ m φ k m φ k ( n ) ] ,
S 3 = ( S 1 2 + S 2 2 ) 1 / 2 .
τ φ k ( a ) ( r , t ) / t = φ k ( a ) ( r , t ) + l 2 2 φ k ( a ) ( r , t ) + f [ I k ( r , t ) ] ,
τ φ k ( r , t ) / t = φ k ( r , t ) + f [ I k ( r , t ) ] .
φ k ( r , t ) = φ k ( a ) ( r , t ) + l 2 2 φ k ( a ) ( r ,   t ) .
φ k ( a ) = F 1 { F [ φ k ] / ( 1 + l 2 ν 2 ) } ,

Metrics