Abstract

The quality and parameters of probing optical beams are extremely important in biomedical imaging systems both for image quality and light coupling efficiency considerations. For example, the shape, size, focal position, and focal range of such beams could have a great impact on the lateral resolution, penetration depth, and signal-to-noise ratio of the image in optical coherence tomography. We present a beam profile characterization of different variations of graded-index (GRIN) fiber lenses, which were recently proposed for biomedical imaging probes. Those GRIN lens modules are made of a single mode fiber and a GRIN fiber lens with or without a fiber spacer between them. We discuss theoretical analysis methods, fabrication techniques, and measured performance compared with theory.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic image of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
    [CrossRef] [PubMed]
  3. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherernce tomography," Opt. Lett. 22, 1439-1441 (1997).
    [CrossRef]
  4. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Ultrahigh-velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography," Proc. SPIE 4251, 156-164 (2001).
    [CrossRef]
  5. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance," Opt. Express 11, 794-809 (2003).
    [CrossRef] [PubMed]
  6. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. H.Park, G. J. Tearney, B. E. Bouma, T. C. Chen, and J. F. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  7. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000).
    [CrossRef]
  8. Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
    [CrossRef]
  9. Y. Zhao, Z. P. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358-1360 (2000).
    [CrossRef]
  10. V. X. D. Yang, S. Tang, M. L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G. Haber, G. Kandel, I. A. Vitkin, and B. C. Wilson, "Endoscopic Doppler optical coherence tomography in human gastrointestinal tract: initial experience," Gastrointest. Endosc. 61, 879-890 (2005).
    [CrossRef] [PubMed]
  11. P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004).
    [CrossRef] [PubMed]
  12. X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, "Imaging needle for optical coherence tomography," Opt. Lett. 25, 1520-1522 (2000).
    [CrossRef]
  13. V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, "Interstitial Doppler optical coherence tomography," Opt. Lett. 30, 1791-1793 (2005).
    [CrossRef] [PubMed]
  14. J. G. Fujimoto, S. A. Bopart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, "High resolution in vivo intra-arterial imaging with optical coherence tomography," Heart 82, 128-133 (1999).
    [PubMed]
  15. L. J. Diaz-Sandoval, B. E. Bouma, G. J. Tearnay, and I. Jang, "Optical coherence tomography as a tool for percutaneous coronary interventions," Catheter. Cardio. Interv. 65, 492-496 (2005).
    [CrossRef]
  16. E. Swanson, C. L. Petersen, E. McNamara, R. B. Lamport, and D. L. Kelly, "Ultrasmall optical probes, imaging optics, and methods for using same," U.S. Patent 6445939 (3 September 2002).
  17. W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
    [CrossRef]
  18. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. Tang, and J. M. Schmitt, "Optical coherence tomography in the diagnosis and treatment of neurological disorders," J. Biomed. Opt. 10(5), 051603 (2005).
    [CrossRef] [PubMed]
  19. H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surgery Med. 38, 754-761 (2006).
    [CrossRef]
  20. A. W. Sainter, T. A. King, and M. R. Dickinson, "Theoretical comparison of light sources for use in optical coherence tomography," Proc. SPIE 4619, 289-299 (2002).
    [CrossRef]
  21. H. W. Kogelnik and T. Li, "Laser beam and resonators," Appl. Opt. 5, 1550 (1966).
    [CrossRef] [PubMed]
  22. W. L. Emkey and C. A. Jack, "Analysis and evaluation of graded-index fiber-lenses," J. Lightwave Technol. LT-5, 1156-1164 (1987).
    [CrossRef]
  23. P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, and J. G. Fujimoto, "Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2261-2263 (2004).
    [CrossRef] [PubMed]
  24. V. X. D. Yang, Y. Mao, B. A. Standish, N. Munce, S. Chiu, D. Burnes, B. C. Wilson, I. A. Vitkin, P. A. Himmer, and D. L. Dickensheets, "Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking," Opt. Lett. 31, 1262-1264 (2006).
    [CrossRef] [PubMed]

2006

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surgery Med. 38, 754-761 (2006).
[CrossRef]

V. X. D. Yang, Y. Mao, B. A. Standish, N. Munce, S. Chiu, D. Burnes, B. C. Wilson, I. A. Vitkin, P. A. Himmer, and D. L. Dickensheets, "Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking," Opt. Lett. 31, 1262-1264 (2006).
[CrossRef] [PubMed]

2005

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. Tang, and J. M. Schmitt, "Optical coherence tomography in the diagnosis and treatment of neurological disorders," J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

L. J. Diaz-Sandoval, B. E. Bouma, G. J. Tearnay, and I. Jang, "Optical coherence tomography as a tool for percutaneous coronary interventions," Catheter. Cardio. Interv. 65, 492-496 (2005).
[CrossRef]

V. X. D. Yang, S. Tang, M. L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G. Haber, G. Kandel, I. A. Vitkin, and B. C. Wilson, "Endoscopic Doppler optical coherence tomography in human gastrointestinal tract: initial experience," Gastrointest. Endosc. 61, 879-890 (2005).
[CrossRef] [PubMed]

V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, "Interstitial Doppler optical coherence tomography," Opt. Lett. 30, 1791-1793 (2005).
[CrossRef] [PubMed]

2004

2003

2002

W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
[CrossRef]

A. W. Sainter, T. A. King, and M. R. Dickinson, "Theoretical comparison of light sources for use in optical coherence tomography," Proc. SPIE 4619, 289-299 (2002).
[CrossRef]

2001

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Ultrahigh-velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography," Proc. SPIE 4251, 156-164 (2001).
[CrossRef]

2000

1999

J. G. Fujimoto, S. A. Bopart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, "High resolution in vivo intra-arterial imaging with optical coherence tomography," Heart 82, 128-133 (1999).
[PubMed]

1997

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1987

W. L. Emkey and C. A. Jack, "Analysis and evaluation of graded-index fiber-lenses," J. Lightwave Technol. LT-5, 1156-1164 (1987).
[CrossRef]

1966

Appl. Opt.

Catheter. Cardio. Interv.

L. J. Diaz-Sandoval, B. E. Bouma, G. J. Tearnay, and I. Jang, "Optical coherence tomography as a tool for percutaneous coronary interventions," Catheter. Cardio. Interv. 65, 492-496 (2005).
[CrossRef]

Gastrointest. Endosc.

V. X. D. Yang, S. Tang, M. L. Gordon, B. Qi, G. Gardiner, M. Cirocco, P. Kortan, G. Haber, G. Kandel, I. A. Vitkin, and B. C. Wilson, "Endoscopic Doppler optical coherence tomography in human gastrointestinal tract: initial experience," Gastrointest. Endosc. 61, 879-890 (2005).
[CrossRef] [PubMed]

Heart

J. G. Fujimoto, S. A. Bopart, G. J. Tearney, B. E. Bouma, C. Pitris, and M. E. Brezinski, "High resolution in vivo intra-arterial imaging with optical coherence tomography," Heart 82, 128-133 (1999).
[PubMed]

J. Biomed. Opt.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. Tang, and J. M. Schmitt, "Optical coherence tomography in the diagnosis and treatment of neurological disorders," J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol.

W. L. Emkey and C. A. Jack, "Analysis and evaluation of graded-index fiber-lenses," J. Lightwave Technol. LT-5, 1156-1164 (1987).
[CrossRef]

Lasers Surgery Med.

H. Li, B. A. Standish, A Mariampillai, N. R. Munce, Y. Mao, S. Chiu, N. E. Marcon, B. C. Wilson, A. Vitkin, and V. X. D. Yang, "Feasibility of interstitial Doppler optical coherence tomography for in vivo detection of microvascular changes during photodynamic therapy," Lasers Surgery Med. 38, 754-761 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography," Opt. Lett. 25, 1448-1450 (2000).
[CrossRef]

Y. H. Zhao, Z. P. Chen, C. Saxer, S. H. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2000).
[CrossRef]

Y. Zhao, Z. P. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, "Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow," Opt. Lett. 25, 1358-1360 (2000).
[CrossRef]

P. H. Tran, D. S. Mukai, M. Brenner, and Z. Chen, "In vivo endoscopic optical coherence tomography by use of a rotational microelectromechanical system probe," Opt. Lett. 29, 1236-1238 (2004).
[CrossRef] [PubMed]

X. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, "Imaging needle for optical coherence tomography," Opt. Lett. 25, 1520-1522 (2000).
[CrossRef]

V. X. D. Yang, Y. X. Mao, N. Munce, B. Standish, W. Kucharczyk, N. E. Marcon, B. C. Wilson, and I. A. Vitkin, "Interstitial Doppler optical coherence tomography," Opt. Lett. 30, 1791-1793 (2005).
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, "Optical Doppler tomographic image of fluid flow velocity in highly scattering media," Opt. Lett. 22, 64-66 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, "In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherernce tomography," Opt. Lett. 22, 1439-1441 (1997).
[CrossRef]

P. R. Herz, Y. Chen, A. D. Aguirre, K. Schneider, P. Hsiung, and J. G. Fujimoto, "Micromotor endoscope catheter for in vivo, ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2261-2263 (2004).
[CrossRef] [PubMed]

V. X. D. Yang, Y. Mao, B. A. Standish, N. Munce, S. Chiu, D. Burnes, B. C. Wilson, I. A. Vitkin, P. A. Himmer, and D. L. Dickensheets, "Doppler optical coherence tomography with a micro-electro-mechanical membrane mirror for high-speed dynamic focus tracking," Opt. Lett. 31, 1262-1264 (2006).
[CrossRef] [PubMed]

W. A. Reed, M. F. Yan, and M. J. Schnitzer, "Gradient-index fiber-optic microprobes for minimally invasive in vivo low-coherence interferometry," Opt. Lett. 27, 1794-1796 (2002).
[CrossRef]

Proc. SPIE

S. Yazdanfar, A. M. Rollins, and J. A. Izatt, "Ultrahigh-velocity resolution imaging of the microcirculation in vivo using color Doppler optical coherence tomography," Proc. SPIE 4251, 156-164 (2001).
[CrossRef]

A. W. Sainter, T. A. King, and M. R. Dickinson, "Theoretical comparison of light sources for use in optical coherence tomography," Proc. SPIE 4619, 289-299 (2002).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

E. Swanson, C. L. Petersen, E. McNamara, R. B. Lamport, and D. L. Kelly, "Ultrasmall optical probes, imaging optics, and methods for using same," U.S. Patent 6445939 (3 September 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Typical schematics of the single mode graded index (GRIN) fiber lens system. (b) Scanning electron micrograph of a GRIN fiber lens tip attached with an angle-polished fiber prism.

Fig. 2
Fig. 2

Theoretical and experimental results of (a) working distance, (b) depth of field, and (c) spot size versus length of GRIN fiber, where dark and light lines represent the calculated results from the ray matrix transformation method and modeled results from ZEMAX at 1300   nm , solid and dash curves represent the samples of 100∕140 and 50∕125 GRIN fibers without NCF, dot and dash-dot curves represent the samples of 100∕140 GRIN fiber with 0.36 and 0.48   mm NCF, and a dash-dot-dot curve represents the samples of 50∕125 GRIN fiber with 0.36   mm NCF, respectively. The experimental results were represented as: hollow up-triangle and square points represent the samples of 100∕140 and 50∕125 GRIN fibers without NCF, filled up-triangle and down-triangle points represent the samples of 100∕140 GRIN fiber with 0.36 and 0.48   mm NCF, and filled square points represents the samples of 50∕125 GRIN fiber with 0.36   mm NCF, respectively.

Fig. 3
Fig. 3

Measured and Gaussian-fitted 1 / e 2 intensity beam diameters along the axial distance (zero is the position of the lens surface) at x (horizontal) and y (vertical) radial coordination in the distance range of depth of field of the samples of 1, 6, 11, and 18.

Tables (2)

Tables Icon

Table 1 Various Sample Structures with Measured Beam Properties

Tables Icon

Table 2 Measured Beam Profile Images and Normalized Intensity Distributions with Gaussian Fittings at x (Horizontal) and y (Vertical) Radial Coordination for Sample 18

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

1 q ( z ) = 1 R ( z ) i λ n π ω 2 ,
q 2 = M 0 , 0 q 1 + M 0 , 1 M 1 , 0 q 1 + M 1 , 1 ,
q 1 = i λ n π ω 0 2 .
n ( r ) = n 0 ( 1 g 2 2 r 2 ) ,
M = | cos ( g L ) n SMF n 0 g  sin ( g L ) n 0 g n 2  sin ( g L ) n SMF n 2  cos ( g L ) | × | 1 L 0 n 1 0 1 | ,
Dist = Re ( q 2 ) , Z 0 = Im ( q 2 ) , W = λ Z 0 n π .

Metrics