Abstract

For the first time to our knowledge we experimentally demonstrate an efficient method for the reduction of long-term radiation line drift in single-frequency cw Ti:sapphire and dye lasers that relies on a fast and precise wavelengthmeter together with a digital–analog feedback system. Generation line drift of lasers is reduced approximately by an order of magnitude down to 40MHz/h, which corresponds to the residual drift in readings of the wavelengthmeter itself. The implemented automatic frequency control system allows us to lock the laser generation frequency to a specified absolute value. This approach may be used in single-frequency lasers of different types (solid-state, fiber, diode, dye lasers, etc.) and allows reduction by an order of magnitude or more of the long-term generation line drift in lasers that are not equipped with other systems for long-term stabilization of output radiation frequency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. M. Kobtsev, A. V. Korablev, S. V. Kukarin, and V. B. Sorokin, "Efficient autoscanned single-frequency cw dye laser," Proc. SPIE 4353, 189-193 (2001).
    [CrossRef]
  2. F. N. Timofeev and R. Kashyap, "High-power, ultrastable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser," Opt. Express 11, 515-520 (2003).
    [CrossRef] [PubMed]
  3. G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, "Frequency stabilization of a diode laser to absorption lines of water vapor in the 944-nm wavelength region," Opt. Eng. 40, 525-528 (2001).
    [CrossRef]
  4. S. Stry, L. Hildebrandt, and J. Sacher, "Compact tunable external cavity diode laser with diffraction-limited 1 W optical power, and its application in BEC and CRDS," Proc. SPIE 5452, 645-653 (2004).
    [CrossRef]
  5. H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, "Frequency doubled and stabilized all-solid-state Ti:sapphire lasers," Opt. Eng. 41, 1122-1127 (2002).
    [CrossRef]
  6. S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Combined cw single-frequency ring dye/Ti:sapphire laser," Quantum Electron. 36, 1148-1152 (2006).
    [CrossRef]
  7. K. Schneider, S. Schiller, J. Mlynek, M. Bode, and I. Freitag, "1.1-W single-frequency 532-nm radiation by second-harmonic generation of a miniature Nd:YAG ring laser," Opt. Lett. 21, 1999-2001 (1996).
    [CrossRef] [PubMed]
  8. W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, "A computer-based digital feedback control of frequency drift of multiple lasers," Rev. Sci. Instrum. 69, 3737-3740 (1998).
    [CrossRef]
  9. P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D 34, 2396-2407 (2001).
    [CrossRef]
  10. P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, "Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer," Opt. Express 12, 644-650 (2004).
    [CrossRef] [PubMed]
  11. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm," Opt. Commun. 194, 207-211 (2001).
    [CrossRef]
  12. A. Rossi, V. Biancalana, B. Mai, and L. Tomassetti, "Long-term drift laser frequency stabilization using purely optical reference," Rev. Sci. Instrum. 73, 2544-2548 (2002).
    [CrossRef]
  13. A. Banerjee, U. D. Rapol, A. Wasan, and V. Natarajan, "High-accuracy wavemeter based on a stabilized diode laser," Appl. Phys. Lett. 79, 2139-2141 (2001).
    [CrossRef]
  14. "High Precision Wavelength Meters: WS/HighFinesse Angstrom Series," http://www.toptica.de/products/itemlayer/59/wavelengthmeter_2007.pdf.
  15. T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, "Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer," Rev. Sci. Instrum. 75, 3318-3326 (2004).
    [CrossRef]
  16. I. S. Grigoriev, A. B. Dyachkov, V. A. Kuznetzov, V. P. Labozin, and V. A. Firsov, "Stabilized single-mode dye laser," Proc. SPIE 5121, 411-420 (2003).
    [CrossRef]
  17. S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Ultra-narrow-linewidth combined cw Ti:sapphire/dye laser for atom cooling and high-precision spectroscopy," Proc. SPIE 6451, 64511U (2007).

2007 (1)

S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Ultra-narrow-linewidth combined cw Ti:sapphire/dye laser for atom cooling and high-precision spectroscopy," Proc. SPIE 6451, 64511U (2007).

2006 (1)

S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Combined cw single-frequency ring dye/Ti:sapphire laser," Quantum Electron. 36, 1148-1152 (2006).
[CrossRef]

2004 (3)

S. Stry, L. Hildebrandt, and J. Sacher, "Compact tunable external cavity diode laser with diffraction-limited 1 W optical power, and its application in BEC and CRDS," Proc. SPIE 5452, 645-653 (2004).
[CrossRef]

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, "Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer," Rev. Sci. Instrum. 75, 3318-3326 (2004).
[CrossRef]

P. Burdack, M. Tröbs, M. Hunnekuhl, C. Fallnich, and I. Freitag, "Modulation-free sub-Doppler laser frequency stabilization to molecular iodine with a common-path, two-color interferometer," Opt. Express 12, 644-650 (2004).
[CrossRef] [PubMed]

2003 (2)

F. N. Timofeev and R. Kashyap, "High-power, ultrastable, single-frequency operation of a long, doped-fiber external-cavity, grating-semiconductor laser," Opt. Express 11, 515-520 (2003).
[CrossRef] [PubMed]

I. S. Grigoriev, A. B. Dyachkov, V. A. Kuznetzov, V. P. Labozin, and V. A. Firsov, "Stabilized single-mode dye laser," Proc. SPIE 5121, 411-420 (2003).
[CrossRef]

2002 (2)

H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, "Frequency doubled and stabilized all-solid-state Ti:sapphire lasers," Opt. Eng. 41, 1122-1127 (2002).
[CrossRef]

A. Rossi, V. Biancalana, B. Mai, and L. Tomassetti, "Long-term drift laser frequency stabilization using purely optical reference," Rev. Sci. Instrum. 73, 2544-2548 (2002).
[CrossRef]

2001 (5)

A. Banerjee, U. D. Rapol, A. Wasan, and V. Natarajan, "High-accuracy wavemeter based on a stabilized diode laser," Appl. Phys. Lett. 79, 2139-2141 (2001).
[CrossRef]

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D 34, 2396-2407 (2001).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm," Opt. Commun. 194, 207-211 (2001).
[CrossRef]

S. M. Kobtsev, A. V. Korablev, S. V. Kukarin, and V. B. Sorokin, "Efficient autoscanned single-frequency cw dye laser," Proc. SPIE 4353, 189-193 (2001).
[CrossRef]

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, "Frequency stabilization of a diode laser to absorption lines of water vapor in the 944-nm wavelength region," Opt. Eng. 40, 525-528 (2001).
[CrossRef]

1998 (1)

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, "A computer-based digital feedback control of frequency drift of multiple lasers," Rev. Sci. Instrum. 69, 3737-3740 (1998).
[CrossRef]

1996 (1)

Appl. Phys. Lett. (1)

A. Banerjee, U. D. Rapol, A. Wasan, and V. Natarajan, "High-accuracy wavemeter based on a stabilized diode laser," Appl. Phys. Lett. 79, 2139-2141 (2001).
[CrossRef]

J. Phys. D (1)

P. Laporta, S. Taccheo, M. Marano, O. Svelto, E. Bava, G. Galzerano, and C. Svelto, "Amplitude and frequency stabilized solid-state lasers in the near infrared," J. Phys. D 34, 2396-2407 (2001).
[CrossRef]

Opt. Commun. (1)

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 946 nm," Opt. Commun. 194, 207-211 (2001).
[CrossRef]

Opt. Eng. (2)

G. J. Koch, A. L. Cook, C. M. Fitzgerald, and A. N. Dharamsi, "Frequency stabilization of a diode laser to absorption lines of water vapor in the 944-nm wavelength region," Opt. Eng. 40, 525-528 (2001).
[CrossRef]

H. J. Onisto, R. L. Cavasso-Filho, A. Scalabrin, D. Pereira, and F. C. Cruz, "Frequency doubled and stabilized all-solid-state Ti:sapphire lasers," Opt. Eng. 41, 1122-1127 (2002).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (4)

I. S. Grigoriev, A. B. Dyachkov, V. A. Kuznetzov, V. P. Labozin, and V. A. Firsov, "Stabilized single-mode dye laser," Proc. SPIE 5121, 411-420 (2003).
[CrossRef]

S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Ultra-narrow-linewidth combined cw Ti:sapphire/dye laser for atom cooling and high-precision spectroscopy," Proc. SPIE 6451, 64511U (2007).

S. Stry, L. Hildebrandt, and J. Sacher, "Compact tunable external cavity diode laser with diffraction-limited 1 W optical power, and its application in BEC and CRDS," Proc. SPIE 5452, 645-653 (2004).
[CrossRef]

S. M. Kobtsev, A. V. Korablev, S. V. Kukarin, and V. B. Sorokin, "Efficient autoscanned single-frequency cw dye laser," Proc. SPIE 4353, 189-193 (2001).
[CrossRef]

Quantum Electron. (1)

S. M. Kobtsev, V. I. Baraulya, and V. M. Lunin, "Combined cw single-frequency ring dye/Ti:sapphire laser," Quantum Electron. 36, 1148-1152 (2006).
[CrossRef]

Rev. Sci. Instrum. (3)

W. Z. Zhao, J. E. Simsarian, L. A. Orozco, and G. D. Sprouse, "A computer-based digital feedback control of frequency drift of multiple lasers," Rev. Sci. Instrum. 69, 3737-3740 (1998).
[CrossRef]

A. Rossi, V. Biancalana, B. Mai, and L. Tomassetti, "Long-term drift laser frequency stabilization using purely optical reference," Rev. Sci. Instrum. 73, 2544-2548 (2002).
[CrossRef]

T. J. Scholl, S. J. Rehse, R. A. Holt, and S. D. Rosner, "Broadband precision wavelength meter based on a stepping Fabry-Pérot interferometer," Rev. Sci. Instrum. 75, 3318-3326 (2004).
[CrossRef]

Other (1)

"High Precision Wavelength Meters: WS/HighFinesse Angstrom Series," http://www.toptica.de/products/itemlayer/59/wavelengthmeter_2007.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout: PD1, PD2, photodetectors; DAC, digital-to-analog converter; ADC, analog-to-digital converter; PC, computer; USB, USB interface connexion.

Fig. 2
Fig. 2

Plot of the generation frequency of a cw single-frequency ring dye laser versus time with the frequency automatically stabilized to the absolute value of 511.59620 THz.

Fig. 3
Fig. 3

Temporal dependence of the output frequency of a cw single-frequency ring dye laser in the frequency stabilization mode registered with an I 2 absorption line.

Fig. 4
Fig. 4

Dependence of the output frequency of a cw single-frequency ring Ti:sapphire laser on time in the frequency stabilization mode and with changing the set frequency values. Initial slope on the plot ( 0 3.5 min ) corresponds to the generation frequency drift of the laser with the stabilization system disengaged. Further on, the laser output frequency is set to different values through the controlling software.

Metrics