Abstract

Ablation of indium oxide doped with tin oxide (ITO) from glass substrates is described. Laser pulse energy and focus spot size were varied in single-pulse, single-spot ablation tests and for ablation of linear features with scanned multiple pulses. The single-pulse ablation threshold of ITO was smaller than that of the glass substrate so the entire thickness of ITO could be removed in a single pulse or with overlying multiple pulses without the possibility of substrate ablation. Linear features could be created at much higher scanning speeds using a high repetition frequency (100  kHz) Yb fiber amplified laser as compared to a lower repetition frequency (2  kHz) laser. An analysis showed that incubation effects lowered ITO ablation thresholds when pulse frequency was high relative to scanning speed, contributing to large feasible scanning speeds for high pulse frequency lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription