Abstract

We developed a 1.5-μm band TM-mode waveguide optical isolator that makes use of the nonreciprocal-loss phenomenon. The device was designed to operate in a single mode and consists of an InGaAlAs∕InP ridge-waveguide optical amplifier covered with a ferromagnetic MnAs layer. The combination of the optical waveguide and the magnetized ferromagnetic metal layer produces a magneto-optic effect called the nonreciprocal-loss phenomenon—a phenomenon in which the propagation loss of light is larger in backward propagation than it is in forward propagation. We propose the guiding design principle for the structure of the device and determine the optimized structure with the aid of electromagnetic simulation using the finite-difference method. On the basis of the results, we fabricated a prototype device and evaluated its operation. The device showed an isolation ratio of 7.2dB/mm at a wavelength from 1.53 to 1.55μm. Our waveguide isolator can be monolithically integrated with other waveguide-based optical devices on an InP substrate.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photon. Technol. Lett. 8, 903-905 (1996).
    [CrossRef]
  2. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
    [CrossRef]
  3. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
    [CrossRef]
  4. V. Zayets, M. C. Debnath, and K. Ando, "Optical isolation in Cd1−xMnxTe magneto-optical waveguide grown on GaAs substrate," Jpn. J. Appl. Phys. , Part 2 43, L1561-L1563 (2004).
    [CrossRef]
  5. J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, "An integrated optical waveguide isolator based on multimode interference by wafer direct bonding," IEEE Trans. Magn. 41, 3520-3522 (2005).
    [CrossRef]
  6. Y. Shoji and T. Mizumoto, "Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers," Appl. Opt. 45, 7144-7150 (2006).
    [CrossRef] [PubMed]
  7. M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," in Proceedings of IEEE Conference on Indium Phosphide and Related Materials (IEEE, 1999), pp. 289-292.
  8. W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).
  9. M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
    [CrossRef]
  10. W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).
  11. H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys., Part 2 43, L1561-L1563 (2004).
  12. H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAsp/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24, 38-43 (2006).
  13. T. Amemiya, H. Shimizu, Y. Nakano, P. N. Hai, M. Yokoyama, and M. Tanaka, "Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs," Appl. Phys. Lett. 89, 021104 (2006).
    [CrossRef]
  14. T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5-μm optical isolator based on magneto-optic effect in ferromagnetic MnAs," Jpn. J. Appl. Phys. , Part 1 46,205-210 (2007).
    [CrossRef]
  15. M. Tanaka, J. P. Harbison, T. Sands, T. L. Cheeks, and G. M. Rothberg, "Molecular-beam epitaxy of MnAs thin-films on GaAs," J. Vac. Sci. Technol. B 12, 1091-1094 (1994).
    [CrossRef]
  16. M. Yokoyama, S. Ohya, and M. Tanaka, "Growth and magnetic properties of epitaxial MnAs thin films grown on InP(001)," Appl. Phys. Lett. 88, 012504 (2006).
    [CrossRef]
  17. T. Amemiya, H. Shimizu, and Y. Nakano, "TM mode waveguide optical isolator based on the nonreciprocal loss shift," in Proceedings of IEEE Conference on Indium Phosphide and Related Materials (IEEE, 2005), pp. 303-306.
  18. L. Daweritz, L. Wan, B. Jenichen, C. Herrmann, J. Mohanty, A. Trampert, and K. H. Ploog, "Thickness dependence of the magnetic properties of MnAs films on GaAs(001) and GaAs(113)A: Role of a natural array of ferromagnetic stripes," J. Appl. Phys. 96, 5056-5052 (2004).
    [CrossRef]

2007 (1)

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5-μm optical isolator based on magneto-optic effect in ferromagnetic MnAs," Jpn. J. Appl. Phys. , Part 1 46,205-210 (2007).
[CrossRef]

2006 (3)

M. Yokoyama, S. Ohya, and M. Tanaka, "Growth and magnetic properties of epitaxial MnAs thin films grown on InP(001)," Appl. Phys. Lett. 88, 012504 (2006).
[CrossRef]

T. Amemiya, H. Shimizu, Y. Nakano, P. N. Hai, M. Yokoyama, and M. Tanaka, "Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs," Appl. Phys. Lett. 89, 021104 (2006).
[CrossRef]

Y. Shoji and T. Mizumoto, "Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers," Appl. Opt. 45, 7144-7150 (2006).
[CrossRef] [PubMed]

2005 (1)

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, "An integrated optical waveguide isolator based on multimode interference by wafer direct bonding," IEEE Trans. Magn. 41, 3520-3522 (2005).
[CrossRef]

2004 (3)

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

V. Zayets, M. C. Debnath, and K. Ando, "Optical isolation in Cd1−xMnxTe magneto-optical waveguide grown on GaAs substrate," Jpn. J. Appl. Phys. , Part 2 43, L1561-L1563 (2004).
[CrossRef]

L. Daweritz, L. Wan, B. Jenichen, C. Herrmann, J. Mohanty, A. Trampert, and K. H. Ploog, "Thickness dependence of the magnetic properties of MnAs films on GaAs(001) and GaAs(113)A: Role of a natural array of ferromagnetic stripes," J. Appl. Phys. 96, 5056-5052 (2004).
[CrossRef]

2000 (2)

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

1996 (1)

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photon. Technol. Lett. 8, 903-905 (1996).
[CrossRef]

1994 (1)

M. Tanaka, J. P. Harbison, T. Sands, T. L. Cheeks, and G. M. Rothberg, "Molecular-beam epitaxy of MnAs thin-films on GaAs," J. Vac. Sci. Technol. B 12, 1091-1094 (1994).
[CrossRef]

Appl. Opt. (2)

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, "Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift," Appl. Opt. 39, 6158-6164 (2000).
[CrossRef]

Y. Shoji and T. Mizumoto, "Wideband design of nonreciprocal phase shift magneto-optical isolators using phase adjustment in Mach-Zehnder interferometers," Appl. Opt. 45, 7144-7150 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
[CrossRef]

M. Yokoyama, S. Ohya, and M. Tanaka, "Growth and magnetic properties of epitaxial MnAs thin films grown on InP(001)," Appl. Phys. Lett. 88, 012504 (2006).
[CrossRef]

M. Vanwolleghem, W. Van Parys, D. Van Thourhout, R. Baets, F. Lelarge, O. Gauthier-Lafaye, B. Thedrez, R. Wirix-Speetjens, and L. Lagae, "Experimental demonstration of nonreciprocal amplified spontaneous emission in a CoFe clad semiconductor optical amplifier for use as an integrated optical isolator," Appl. Phys. Lett. 85, 3980-3982 (2004).
[CrossRef]

T. Amemiya, H. Shimizu, Y. Nakano, P. N. Hai, M. Yokoyama, and M. Tanaka, "Semiconductor waveguide optical isolator based on nonreciprocal loss induced by ferromagnetic MnAs," Appl. Phys. Lett. 89, 021104 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Levy, R. M. Osgood, H. Hegde, F. J. Cadieu, R. Wolfe, and V. J. Fratello, "Integrated optical isolators with sputter-deposited thin-film magnets," IEEE Photon. Technol. Lett. 8, 903-905 (1996).
[CrossRef]

IEEE Trans. Magn. (1)

J. S. Yang, J. W. Roh, S. H. Ok, D. H. Woo, Y. T. Byun, W. Y. Lee, T. Mizumoto, and S. Lee, "An integrated optical waveguide isolator based on multimode interference by wafer direct bonding," IEEE Trans. Magn. 41, 3520-3522 (2005).
[CrossRef]

J. Appl. Phys. (1)

L. Daweritz, L. Wan, B. Jenichen, C. Herrmann, J. Mohanty, A. Trampert, and K. H. Ploog, "Thickness dependence of the magnetic properties of MnAs films on GaAs(001) and GaAs(113)A: Role of a natural array of ferromagnetic stripes," J. Appl. Phys. 96, 5056-5052 (2004).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Tanaka, J. P. Harbison, T. Sands, T. L. Cheeks, and G. M. Rothberg, "Molecular-beam epitaxy of MnAs thin-films on GaAs," J. Vac. Sci. Technol. B 12, 1091-1094 (1994).
[CrossRef]

Jpn. J. Appl. Phys. (2)

V. Zayets, M. C. Debnath, and K. Ando, "Optical isolation in Cd1−xMnxTe magneto-optical waveguide grown on GaAs substrate," Jpn. J. Appl. Phys. , Part 2 43, L1561-L1563 (2004).
[CrossRef]

T. Amemiya, H. Shimizu, P. N. Hai, M. Yokoyama, M. Tanaka, and Y. Nakano, "Waveguide-based 1.5-μm optical isolator based on magneto-optic effect in ferromagnetic MnAs," Jpn. J. Appl. Phys. , Part 1 46,205-210 (2007).
[CrossRef]

Other (6)

M. Takenaka and Y. Nakano, "Proposal of a novel semiconductor optical waveguide isolator," in Proceedings of IEEE Conference on Indium Phosphide and Related Materials (IEEE, 1999), pp. 289-292.

W. Zaets and K. Ando, "Optical waveguide isolator based on nonreciprocal loss/gain of amplifier covered by ferromagnetic layer," IEEE Photon. Technol. Lett. 11, 1012-1014 (1999).

W. Van Parys, B. Moeyersoon, D. Van Thourhout, R. Baets, M. Vanwolleghem, B. Dagens, J. Decobert, O. L. Gouezigou, D. Make, R. Vanheertum, and L. Lagae, "Transverse magnetic mode nonreciprocal propagation in an amplifying AlGaInAs/InP optical waveguide isolator," Appl. Phys. Lett. 88, 071115 (2006).

H. Shimizu and Y. Nakano, "First demonstration of TE mode nonreciprocal propagation in an InGaAsP/InP active waveguide for an integratable optical isolator," Jpn. J. Appl. Phys., Part 2 43, L1561-L1563 (2004).

H. Shimizu and Y. Nakano, "Fabrication and characterization of an InGaAsp/InP active waveguide optical isolator with 14.7 dB/mm TE mode nonreciprocal attenuation," IEEE J. Lightwave Technol. 24, 38-43 (2006).

T. Amemiya, H. Shimizu, and Y. Nakano, "TM mode waveguide optical isolator based on the nonreciprocal loss shift," in Proceedings of IEEE Conference on Indium Phosphide and Related Materials (IEEE, 2005), pp. 303-306.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Schematic cross section of our waveguide isolator for 1.5 - μ m TM mode, consisting of a ridge-shaped optical amplifying waveguide covered with a MaAs layer magnetized in the x direction. Light propagates along the z direction.

Fig. 2
Fig. 2

(Color online) Forward and backward absorption loss (propagation loss) and isolation ratio (nonreciprocity) in the device as a function of MnAs-layer thickness and cladding layer thickness, calculated for 1.55 - μ m TM mode.

Fig. 3
Fig. 3

(Color online) Distribution profile of light traveling in the isolator, calculated for 1.55 - μ m TM mode, with a 350 - nm cladding layer and a 200 - nm MnAs layer: cross section of distribution for (a-1) forward and (b-1) backward propagating light; distribution along vertical center line [dashed lines in (a-1) and (b-1)] of the device for (a-2) forward and (b-2) backward propagating light.

Fig. 4
Fig. 4

SEM cross section of the device.

Fig. 5
Fig. 5

(Color online) Magnetization curve for MnAs layer, measured with an AGFM. MnAs layer can be easily magnetized along the [011] direction of the InP substrate. In contrast, magnetization is difficult along the [01-1] direction.

Fig. 6
Fig. 6

Experimental setup for measuring isolation ratio and propagation loss of light in the device.

Fig. 7
Fig. 7

(Color online) Transmission spectra of device for forward transmission (dashed curve) and backward transmission (solid curve), measured for (a) TM mode and (b) TE mode, at 1.54 - μ m wavelength, 100 - mA driving current, and 0.1-T magnetic field. The device is 0.65   mm long. Data on transmission intensity include loss caused by the measurement system. Inset is the near-field pattern of the TM-mode forward propagating light.

Fig. 8
Fig. 8

(Color online) Transmission intensity as a function of device length, measured for the 1.54 - μ m TM mode, with 100 - mA driving current and 0.1-T magnetic field. The isolation ratio is also plotted.

Fig. 9
Fig. 9

(Color online) Isolation ratio as a function of a wavelength from 1.53 to 1.55 μ m for a 0.65 - mm long device. The transmission intensity is also plotted for forward and backward propagation (including measurement system loss).

Tables (1)

Tables Icon

Table 1 Parameters Used for Calculating Device Characteristics

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

( ε n 0 0 0 ε n j α 0 j α ε n ) ,
2 H x x 2 + 2 H x y 2 + A H x = 0 ( A = k 0 2 ε n β 2 ) ,
2 H x x 2 + 2 H x y 2 ε n α β B H x y + B H x = 0
( B = k 0 2 ε n β 2 k 0 2 α 2 ε n ) .
1 m 2 H p 1 , q + 1 m 2 H p + 1 , q + 1 n 2 H p , q 1 + 1 n 2 H p , q + 1 + ( A 2 m 2 2 n 2 ) H p , q = 0 ,
1 m 2 H p 1 , q + 1 m 2 H p + 1 , q + 1 n 2 H p , q 1 + ε n 2 n α β B H p , q 1 + 1 n 2 H p , q + 1 ε n 2 n α β B H p , q + 1 + ( B 2 m 2 2 n 2 ) H p , q = 0,

Metrics