Abstract

The main objective of this work was to investigate how the cell size and the presence of a cell wall influence the scattering properties of the green microalgae Chlamydomonas reinhardtii. The growth cycle of two strains, one with a cell wall and one without, was synchronized to be in the same growth phase. Measurements were conducted at two different phases of the growth cycle on both strains of the algae. It was found that the shape of the scattering phase function was very similar for both strains at both growth phases, but the regular strain with a cell wall scatters more strongly than the wall-less mutant. It was also found that the mutant strain has a stronger increase in scattering than the regular strain, as the algae grow, and that the scattering from the regular strain is more wavelength dependent than from the mutant strain.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. B. Field, M. T. Behrenfeld, J. T. Randerson, and P. Falkowski, "Primary production of the biosphere: Integrating terrestrial and oceanic components," Science 281, 237-240 (1998).
    [CrossRef] [PubMed]
  2. R. B. Myneni, C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature 386, 698-702 (1997).
    [CrossRef]
  3. W. Eikrem and J. Throndsen, "Toxic prymnesiophytes identified from Norwegian coastal waters," in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda and Y. Shimizu, eds., Proceedings of the Fifth International Conference on the Toxic Marine Phytoplankton (Elsevier, 1993), pp. 687-692.
  4. D. Stramski and C. D. Mobley, "Effects of microbial particles on oceanic optics: A database of single-particles optical properties," Limnol. Oceanogr. 42, 538-549 (1997).
    [CrossRef]
  5. A. Morel and Y. Ahn, "Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells," N. Z. J. Marine Freshwater Res. 49, 177-202 (1991).
  6. K. J. Voss, W. M. Balch, and K. A. Kilpatrick, "Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths," Limnol. Oceanogr. 43, 870-876 (1998).
    [CrossRef]
  7. H. R. Gordon and T. Du, "Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
    [CrossRef]
  8. R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition, and taxonomy," J. Plankton Res. 26, 191-212 (2004).
    [CrossRef]
  9. T. J. Petzold, "Volume scattering functions for selected ocean waters," in Benchmark Papers in Optics: Light in the Sea, J. Tyler, ed. (Dowden, Hutchinson, and Ross, Inc., 1972), Vol. 3, pp. 152-174.
  10. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002).
    [CrossRef] [PubMed]
  11. M. E. Lee and M. R. Lewis, "A new method of the measurement of the optical volume scattering function in the upper ocean," J. Atmos. Ocean. Technol. 20, 563-571 (2003).
    [CrossRef]
  12. H. Volten, F. de Hann, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, "Laboratory measurements of angular distributions of light scattered by phytoplankton and slit," Limnol. Oceanogr. 44, 1180-1197 (1998).
    [CrossRef]
  13. E. H. Harris, The Chlamydomnas Sourcebook--A Comprehensive Guide to Biology and Laboratory Use (Academic, 1989).
  14. T. Lien and G. Knutsen, "Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardtii," Arch. Microbiol. 108, 189-194 (1976).
    [CrossRef] [PubMed]
  15. T. Lien and G. Knutsen, "Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions," J. Phycol. 15, 191-200 (1979).
    [CrossRef]
  16. J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. D. Olseng, "Laboratory measurements of light scattering from marine particles," Limnol. Oceanogr. Methods 5, 34-40 (2007).
    [CrossRef]
  17. H. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 143-146.
  18. T. Kaiser and G. Schweiger, "Stable algorithm for the computation of Mie coefficients for scattered and transmitted fields of a coated sphere," Comput. Phys. 7, 682-686 (1993).
    [CrossRef]
  19. J. C. Kitchen and J. R. V. Zaneveld, "A three-layered sphere model of the optical properties of phytoplankton," Limnol. Oceanogr. 37, 1680-1690 (1992).
    [CrossRef]
  20. E. Van Donk, M. Lürling, D. O. Hessen, and G. M. Lokhorst, "Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers," Limnol. Oceanogr. 42, 357-364 (1997).
    [CrossRef]
  21. A. Morel, "Optics of marine particles and marine optics," Particle Analysis in Oceanography, NATO ASI series G27 (1991), pp. 142-188.
  22. Y. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res. 39, 1835-1855 (1992).
    [CrossRef]
  23. D. Stramski, G. Rosenberg, and L. Legendre, "Photosynthesis and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface-wave focusing," Mar. Biol. 115, 363-372 (1993).
    [CrossRef]
  24. G. Knutsen and T. Lien, "Properties of synchronous cultures of Chlamydomonas reinhardtii under optimal conditions, and some factors influencing them," Ber. Dtsch. Bot. Ges. 94, 599-611 (1981).

2007 (1)

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. D. Olseng, "Laboratory measurements of light scattering from marine particles," Limnol. Oceanogr. Methods 5, 34-40 (2007).
[CrossRef]

2004 (1)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition, and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

2003 (1)

M. E. Lee and M. R. Lewis, "A new method of the measurement of the optical volume scattering function in the upper ocean," J. Atmos. Ocean. Technol. 20, 563-571 (2003).
[CrossRef]

2002 (1)

2001 (1)

H. R. Gordon and T. Du, "Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

1998 (3)

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, "Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths," Limnol. Oceanogr. 43, 870-876 (1998).
[CrossRef]

H. Volten, F. de Hann, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, "Laboratory measurements of angular distributions of light scattered by phytoplankton and slit," Limnol. Oceanogr. 44, 1180-1197 (1998).
[CrossRef]

C. B. Field, M. T. Behrenfeld, J. T. Randerson, and P. Falkowski, "Primary production of the biosphere: Integrating terrestrial and oceanic components," Science 281, 237-240 (1998).
[CrossRef] [PubMed]

1997 (3)

R. B. Myneni, C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature 386, 698-702 (1997).
[CrossRef]

D. Stramski and C. D. Mobley, "Effects of microbial particles on oceanic optics: A database of single-particles optical properties," Limnol. Oceanogr. 42, 538-549 (1997).
[CrossRef]

E. Van Donk, M. Lürling, D. O. Hessen, and G. M. Lokhorst, "Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers," Limnol. Oceanogr. 42, 357-364 (1997).
[CrossRef]

1993 (2)

T. Kaiser and G. Schweiger, "Stable algorithm for the computation of Mie coefficients for scattered and transmitted fields of a coated sphere," Comput. Phys. 7, 682-686 (1993).
[CrossRef]

D. Stramski, G. Rosenberg, and L. Legendre, "Photosynthesis and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface-wave focusing," Mar. Biol. 115, 363-372 (1993).
[CrossRef]

1992 (2)

J. C. Kitchen and J. R. V. Zaneveld, "A three-layered sphere model of the optical properties of phytoplankton," Limnol. Oceanogr. 37, 1680-1690 (1992).
[CrossRef]

Y. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res. 39, 1835-1855 (1992).
[CrossRef]

1991 (2)

A. Morel, "Optics of marine particles and marine optics," Particle Analysis in Oceanography, NATO ASI series G27 (1991), pp. 142-188.

A. Morel and Y. Ahn, "Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells," N. Z. J. Marine Freshwater Res. 49, 177-202 (1991).

1981 (1)

G. Knutsen and T. Lien, "Properties of synchronous cultures of Chlamydomonas reinhardtii under optimal conditions, and some factors influencing them," Ber. Dtsch. Bot. Ges. 94, 599-611 (1981).

1979 (1)

T. Lien and G. Knutsen, "Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions," J. Phycol. 15, 191-200 (1979).
[CrossRef]

1976 (1)

T. Lien and G. Knutsen, "Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardtii," Arch. Microbiol. 108, 189-194 (1976).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Microbiol. (1)

T. Lien and G. Knutsen, "Synchronized cultures of a cell wall-less mutant of Chlamydomonas reinhardtii," Arch. Microbiol. 108, 189-194 (1976).
[CrossRef] [PubMed]

Ber. Dtsch. Bot. Ges. (1)

G. Knutsen and T. Lien, "Properties of synchronous cultures of Chlamydomonas reinhardtii under optimal conditions, and some factors influencing them," Ber. Dtsch. Bot. Ges. 94, 599-611 (1981).

Comput. Phys. (1)

T. Kaiser and G. Schweiger, "Stable algorithm for the computation of Mie coefficients for scattered and transmitted fields of a coated sphere," Comput. Phys. 7, 682-686 (1993).
[CrossRef]

Deep-Sea Res. (1)

Y. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res. 39, 1835-1855 (1992).
[CrossRef]

J. Atmos. Ocean. Technol. (1)

M. E. Lee and M. R. Lewis, "A new method of the measurement of the optical volume scattering function in the upper ocean," J. Atmos. Ocean. Technol. 20, 563-571 (2003).
[CrossRef]

J. Phycol. (1)

T. Lien and G. Knutsen, "Synchronous growth of Chlamydomonas reinhardtii (Chlorophyceae): A review of optimal conditions," J. Phycol. 15, 191-200 (1979).
[CrossRef]

J. Plankton Res. (1)

R. D. Vaillancourt, C. W. Brown, R. R. L. Guillard, and W. M. Balch, "Light backscattering properties of marine phytoplankton: relationships to cell size, chemical composition, and taxonomy," J. Plankton Res. 26, 191-212 (2004).
[CrossRef]

Limnol. Oceanogr. (6)

K. J. Voss, W. M. Balch, and K. A. Kilpatrick, "Scattering and attenuation properties of Emiliania huxleyi cells and their detached coccoliths," Limnol. Oceanogr. 43, 870-876 (1998).
[CrossRef]

H. R. Gordon and T. Du, "Light scattering by nonspherical particles: Application to coccoliths detached from Emiliania huxleyi," Limnol. Oceanogr. 46, 1438-1454 (2001).
[CrossRef]

D. Stramski and C. D. Mobley, "Effects of microbial particles on oceanic optics: A database of single-particles optical properties," Limnol. Oceanogr. 42, 538-549 (1997).
[CrossRef]

J. C. Kitchen and J. R. V. Zaneveld, "A three-layered sphere model of the optical properties of phytoplankton," Limnol. Oceanogr. 37, 1680-1690 (1992).
[CrossRef]

E. Van Donk, M. Lürling, D. O. Hessen, and G. M. Lokhorst, "Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers," Limnol. Oceanogr. 42, 357-364 (1997).
[CrossRef]

H. Volten, F. de Hann, J. W. Hovenier, R. Schreurs, W. Vassen, A. G. Dekker, H. J. Hoogenboom, F. Charlton, and R. Wouts, "Laboratory measurements of angular distributions of light scattered by phytoplankton and slit," Limnol. Oceanogr. 44, 1180-1197 (1998).
[CrossRef]

Limnol. Oceanogr. Methods (1)

J. K. Lotsberg, E. Marken, J. J. Stamnes, S. R. Erga, K. Aursland, and C. D. Olseng, "Laboratory measurements of light scattering from marine particles," Limnol. Oceanogr. Methods 5, 34-40 (2007).
[CrossRef]

Mar. Biol. (1)

D. Stramski, G. Rosenberg, and L. Legendre, "Photosynthesis and optical properties of the marine chlorophyte Dunaliella tertiolecta grown under fluctuating light caused by surface-wave focusing," Mar. Biol. 115, 363-372 (1993).
[CrossRef]

N. Z. J. Marine Freshwater Res. (1)

A. Morel and Y. Ahn, "Optics of heterotrophic nanoflagellates and ciliates: A tentative assessment of their scattering role in oceanic waters compared to those of bacterial and algal cells," N. Z. J. Marine Freshwater Res. 49, 177-202 (1991).

Nature (1)

R. B. Myneni, C. D. Keeling, C. J. Tucker, G. Asrar, and R. R. Nemani, "Increased plant growth in the northern high latitudes from 1981 to 1991," Nature 386, 698-702 (1997).
[CrossRef]

Science (1)

C. B. Field, M. T. Behrenfeld, J. T. Randerson, and P. Falkowski, "Primary production of the biosphere: Integrating terrestrial and oceanic components," Science 281, 237-240 (1998).
[CrossRef] [PubMed]

Other (5)

E. H. Harris, The Chlamydomnas Sourcebook--A Comprehensive Guide to Biology and Laboratory Use (Academic, 1989).

W. Eikrem and J. Throndsen, "Toxic prymnesiophytes identified from Norwegian coastal waters," in Toxic Phytoplankton Blooms in the Sea, T. J. Smayda and Y. Shimizu, eds., Proceedings of the Fifth International Conference on the Toxic Marine Phytoplankton (Elsevier, 1993), pp. 687-692.

T. J. Petzold, "Volume scattering functions for selected ocean waters," in Benchmark Papers in Optics: Light in the Sea, J. Tyler, ed. (Dowden, Hutchinson, and Ross, Inc., 1972), Vol. 3, pp. 152-174.

H. van de Hulst, Light Scattering by Small Particles (Wiley, 1957), pp. 143-146.

A. Morel, "Optics of marine particles and marine optics," Particle Analysis in Oceanography, NATO ASI series G27 (1991), pp. 142-188.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

The upper part of the figure shows the regular strain of Chlamydomonas reinhardtii with a cell wall, while the lower part shows the wall-less mutant.

Fig. 2
Fig. 2

(Color online) Experimental setup for the measurements of the scattering phase function. A magnetic stirrer is used with the sample cylinder.

Fig. 3
Fig. 3

Theoretical and experimental scattering phase function for Dynospheres at 550 n m .

Fig. 4
Fig. 4

Mie calculations of the scattering phase function for coated spheres with different thicknesses of the coating, and with m r = 1.4 for core and m r = 1.6 for the coating.

Fig. 5
Fig. 5

Mie calculations of the scattering phase function for coated spheres with different refractive indices ( m r ) for the coating. The refractive index of the core of was m r = 1.4 .

Fig. 6
Fig. 6

The scattering phase function for both strains at Phase 1, measured at 550 n m .

Fig. 7
Fig. 7

The scattering phase function for both strains at Phase 2, measured at 550 n m .

Fig. 8
Fig. 8

The scattering phase function for the regular strain in both phases, measured at 550 n m .

Fig. 9
Fig. 9

Scattering coefficients calculated from the scattering phase function (SPF) and measured with the ac9. The regular strain is labeled R1 and R2 and the mutant with M1 and M2, where 1 and 2 indicate Phase 1 and Phase 2, respectively.

Fig. 10
Fig. 10

Backscattering coefficients calculated from the scattering phase function. The regular strain is labeled R1 and R2 and the mutant with M1 and M2, where 1 and 2 indicate Phase 1 and Phase 2, respectively.

Fig. 11
Fig. 11

Backscattering ratio calculated from the scattering phase function. The regular strain is labeled R1 and R2 and the mutant with M1 and M2, where 1 and 2 indicate Phase 1 and Phase 2, respectively.

Tables (1)

Tables Icon

Table 1 Mean Size (Diameter), the Standard Deviation, and the Cell Concentration of the Algae Cultures at the Two Growth Phases a

Metrics