Abstract

A space-variant photonic crystal filter is designed and optimized that may be placed over a detector array to perform filtering functions tuned for each pixel. The photonic crystal is formed by etching arrays of holes through a multilayer stack of alternating high and low refractive index materials. Position of a narrow transmission notch within a wide reflection band is varied across the device aperture by adjusting the diameter of the holes. Numerical simulations are used to design and optimize the geometry of the photonic crystal. As a result of physics inherent in the etching process, the diameter of the holes reduces with depth, producing a taper. Optical performance was found to be sensitive to the taper, but a method for compensation was developed where film thickness is varied through the device.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription