Abstract

Propagation of a dye laser beam of wavelength 5700Å through nitrogen is considered. Values of transmittance, averaged over intervals of 0.5cm1, are obtained for absorber thicknesses of 0.1, 1, and 10 atm-cm, using the quasi-random model of molecular band absorption. From these values, intensities of the absorption lines in the first positive system of N 2 are simulated in the frequency interval of 17,54017,548cm1.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. G. Strauch, V. E. Derr, and R. E. Cupp, "Atmospheric temperature measurement using Raman backscatter," J. Appl. Meteorol. 10, 2665-2669 (1971).
  2. J. Cooney, "Measurements of atmospheric temperature profiles by Raman backscatter," J. Appl. Meteorol. 11, 108-112 (1972).
    [CrossRef]
  3. C. R. Philbrick, "Raman lidar measurements of atmospheric properties," Proc. SPIE 2222, 922-931 (1994).
    [CrossRef]
  4. F. Balsiger, P. A. T. Haris, and C. R. Philbrick, "Lower troposphere temperature measurements using a rotational Raman lidar," Proc. SPIE 2832, 53-60 (1996).
    [CrossRef]
  5. F. Balsiger and C. R. Philbrick, "Comparison of lidar water vapor measurements using Raman scatter at 266 nm and 532 nm," Proc. SPIE 2833, 231-240 (1996).
    [CrossRef]
  6. R. D. Verma, "High resolution study of the absorption spectrum of the first positive system of N2," Can. J. Phys. 62, 414-418 (1984).
  7. S. S. Jois, "A study of the 12-8 band of the B 3Πg--A 3Σu+ transition of N2 molecule," Ind. J. Phys. 61B, 436-447 (1987).
  8. V. R. Stull, P. J. Wyatt, and G. N. Plass, "The infrared transmittance of water vapor," Appl. Opt. 3, 229-241 (1964).
  9. V. R. Stull, P. J. Wyatt, and G. N. Plass, "The infrared transmittance of carbon dioxide," Appl. Opt. 3, 243-254 (1964).
  10. A. Gohain Barua and G. D. Baruah, "Propagation of dye laser beam through p-benzoquinone-H4 vapor," Ind. J. Pure Appl. Phys. 39, 231-234 (2001).
  11. A. Gohain Barua and G. D. Baruah, "Propagation of a laser beam through vapor media," Proc. SPIE 4976, 222-225 (2003).
    [CrossRef]
  12. A. Gohain Barua, A. K. Borah, and S. S. Jois, "Propagation of a 575 nm dye laser beam through nitrogen," J. Atm. Sol.-Terr. Phys. 68, 1330-1333 (2006).
    [CrossRef]
  13. G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Van Nostrand, 1950), Vol. 1.
  14. R. D. Verma and S. S. Jois, "Absorption spectrum of the b′ 1Σu+ ← X 1Σg+ transition of the N2 molecule excited by the flash discharge technique," J. Phys. B 17, 3229-3237.
  15. P. J. Wyatt, V. R. Stull, and G. N. Plass, "Quasi-random model of band absorption," J. Opt. Soc. Am. 52, 1209-1217 (1962).
  16. S. S. Jois, "Rotational line strength sums in the 12-8 band of B 3Πg--A 3Σu+ transition of N2 molecule," Ind. J. Phys. 62B, 171-174 (1988).
  17. I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, 1st ed. (Adam Hilger, 1969).

2006 (1)

A. Gohain Barua, A. K. Borah, and S. S. Jois, "Propagation of a 575 nm dye laser beam through nitrogen," J. Atm. Sol.-Terr. Phys. 68, 1330-1333 (2006).
[CrossRef]

2003 (1)

A. Gohain Barua and G. D. Baruah, "Propagation of a laser beam through vapor media," Proc. SPIE 4976, 222-225 (2003).
[CrossRef]

2001 (1)

A. Gohain Barua and G. D. Baruah, "Propagation of dye laser beam through p-benzoquinone-H4 vapor," Ind. J. Pure Appl. Phys. 39, 231-234 (2001).

1996 (2)

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, "Lower troposphere temperature measurements using a rotational Raman lidar," Proc. SPIE 2832, 53-60 (1996).
[CrossRef]

F. Balsiger and C. R. Philbrick, "Comparison of lidar water vapor measurements using Raman scatter at 266 nm and 532 nm," Proc. SPIE 2833, 231-240 (1996).
[CrossRef]

1994 (1)

C. R. Philbrick, "Raman lidar measurements of atmospheric properties," Proc. SPIE 2222, 922-931 (1994).
[CrossRef]

1988 (1)

S. S. Jois, "Rotational line strength sums in the 12-8 band of B 3Πg--A 3Σu+ transition of N2 molecule," Ind. J. Phys. 62B, 171-174 (1988).

1987 (1)

S. S. Jois, "A study of the 12-8 band of the B 3Πg--A 3Σu+ transition of N2 molecule," Ind. J. Phys. 61B, 436-447 (1987).

1984 (1)

R. D. Verma, "High resolution study of the absorption spectrum of the first positive system of N2," Can. J. Phys. 62, 414-418 (1984).

1972 (1)

J. Cooney, "Measurements of atmospheric temperature profiles by Raman backscatter," J. Appl. Meteorol. 11, 108-112 (1972).
[CrossRef]

1971 (1)

R. G. Strauch, V. E. Derr, and R. E. Cupp, "Atmospheric temperature measurement using Raman backscatter," J. Appl. Meteorol. 10, 2665-2669 (1971).

1964 (2)

1962 (1)

Appl. Opt. (2)

Can. J. Phys. (1)

R. D. Verma, "High resolution study of the absorption spectrum of the first positive system of N2," Can. J. Phys. 62, 414-418 (1984).

Ind. J. Phys. (2)

S. S. Jois, "A study of the 12-8 band of the B 3Πg--A 3Σu+ transition of N2 molecule," Ind. J. Phys. 61B, 436-447 (1987).

S. S. Jois, "Rotational line strength sums in the 12-8 band of B 3Πg--A 3Σu+ transition of N2 molecule," Ind. J. Phys. 62B, 171-174 (1988).

Ind. J. Pure Appl. Phys. (1)

A. Gohain Barua and G. D. Baruah, "Propagation of dye laser beam through p-benzoquinone-H4 vapor," Ind. J. Pure Appl. Phys. 39, 231-234 (2001).

J. Appl. Meteorol. (2)

R. G. Strauch, V. E. Derr, and R. E. Cupp, "Atmospheric temperature measurement using Raman backscatter," J. Appl. Meteorol. 10, 2665-2669 (1971).

J. Cooney, "Measurements of atmospheric temperature profiles by Raman backscatter," J. Appl. Meteorol. 11, 108-112 (1972).
[CrossRef]

J. Atm. Sol.-Terr. Phys. (1)

A. Gohain Barua, A. K. Borah, and S. S. Jois, "Propagation of a 575 nm dye laser beam through nitrogen," J. Atm. Sol.-Terr. Phys. 68, 1330-1333 (2006).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. B (1)

R. D. Verma and S. S. Jois, "Absorption spectrum of the b′ 1Σu+ ← X 1Σg+ transition of the N2 molecule excited by the flash discharge technique," J. Phys. B 17, 3229-3237.

Proc. SPIE (4)

C. R. Philbrick, "Raman lidar measurements of atmospheric properties," Proc. SPIE 2222, 922-931 (1994).
[CrossRef]

F. Balsiger, P. A. T. Haris, and C. R. Philbrick, "Lower troposphere temperature measurements using a rotational Raman lidar," Proc. SPIE 2832, 53-60 (1996).
[CrossRef]

F. Balsiger and C. R. Philbrick, "Comparison of lidar water vapor measurements using Raman scatter at 266 nm and 532 nm," Proc. SPIE 2833, 231-240 (1996).
[CrossRef]

A. Gohain Barua and G. D. Baruah, "Propagation of a laser beam through vapor media," Proc. SPIE 4976, 222-225 (2003).
[CrossRef]

Other (2)

I. Kovacs, Rotational Structure in the Spectra of Diatomic Molecules, 1st ed. (Adam Hilger, 1969).

G. Herzberg, Molecular Spectra and Molecular Structure, 2nd ed. (Van Nostrand, 1950), Vol. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorptance for a 0.1 atm-cm path length of nitrogen.

Fig. 2
Fig. 2

Absorptance for a 1 atm-cm path length of nitrogen.

Fig. 3
Fig. 3

Absorptance for a 10 atm-cm path length of nitrogen.

Tables (2)

Tables Icon

Table 1 Nitrogen Lines Affecting the Propagation of the 5700 Å Laser Beam

Tables Icon

Table 2 Absorption of a Dye Laser Beam for Three Different Amounts of Nitrogen

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T ( ν ) = i = 1 5 { ( 1 δ ) δ p exp [ S i u b ( ν , ν i ) ] d ν i } n i ,
b ( ν , ν i ) = α / π ( ν ν i ) 2 + α 2
T = T j i j T i .

Metrics