Abstract

We investigated grating-coupled transmission-type surface plasmon resonance (SPR) for sensing applications. In the transmission-type SPR structure, propagating surface plasmons are outcoupled to radiation modes by dielectric and metallic gratings on a metal film. The results calculated in air and water suggest that the proposed structures present extremely linear sensing characteristics. In terms of a figure of merit, a metallic grating-based structure performs 5.4 and 3.7 times better than that of a dielectric grating in air and water, respectively.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988).
    [PubMed]
  2. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [Crossref]
  3. A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
    [Crossref]
  4. E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
    [Crossref]
  5. A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
    [Crossref] [PubMed]
  6. E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004).
    [Crossref]
  7. S. J. Yoon and D. Kim, "Thin-film-based field penetration engineering for surface plasmon resonance biosensing," J. Opt. Soc. Am. A 24, 2543-2549 (2007).
    [Crossref]
  8. W. Rothballer, "The influence of surface plasma oscillations on the diffraction orders of sinusoidal surface gratings," Opt. Commun. 20, 429-433 (1977).
    [Crossref]
  9. N. Garcia, "Exact calculations of p-polarized electromagnetic fields incident on grating surfaces: surface polariton resonances," Opt. Commun. 45, 307-310 (1983).
    [Crossref]
  10. P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, "Surface plasmon resonance on gratings as a novel means for gas sensing," Sens. Actuators B 8, 155-160 (1992).
    [Crossref]
  11. M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994).
    [Crossref]
  12. S. Park, G. Lee, S. H. Song, C. H. Oh, and P. S. Kim, "Resonant coupling of surface plasmons to radiation modes by use of dielectric gratings," Opt. Lett. 28, 1870-1872 (2003).
    [Crossref] [PubMed]
  13. C. Lenaerts, F. Michel, B. Tilkens, Y. Lion, and Y. Renotte, "High transmission efficiency for surface plasmon resonance by use of a dielectric grating," Appl. Opt. 44, 6017-6022 (2005).
    [Crossref] [PubMed]
  14. S. Shen, E. Forsberg, Z. Han, and S. He, "Strong resonant coupling of surface plasmon polaritons to radiation modes through a thin metal slab with dielectric gratings," J. Opt. Soc. Am. A 24, 225-230 (2007).
    [Crossref]
  15. M. G. Moharam and T. K. Gaylord, "Diffraction analysis of dielectric surface-relief gratings," J. Opt. Soc. Am. 72, 1385-1392 (1982).
    [Crossref]
  16. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986).
    [Crossref]
  17. L. Li and C. W. Haggans, "Convergence of the coupled-wave method for metallic lamellar diffraction gratings," J. Opt. Soc. Am. A 10, 1184-1189 (1993).
    [Crossref]
  18. Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).
  19. J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
    [Crossref]
  20. E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002).
    [Crossref]
  21. J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005).
    [Crossref]
  22. K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
    [Crossref] [PubMed]
  23. K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
    [Crossref]
  24. D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
    [Crossref]
  25. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
    [Crossref] [PubMed]

2007 (2)

2006 (2)

D. Kim, "Effect of resonant localized plasmon coupling on the sensitivity enhancement of nanowire-based surface plasmon resonance biosensors," J. Opt. Soc. Am. A 23, 2307-2314 (2006).
[Crossref]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[Crossref]

2005 (5)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[Crossref] [PubMed]

C. Lenaerts, F. Michel, B. Tilkens, Y. Lion, and Y. Renotte, "High transmission efficiency for surface plasmon resonance by use of a dielectric grating," Appl. Opt. 44, 6017-6022 (2005).
[Crossref] [PubMed]

J. Cesario, R. Quidant, G. Badenes, and S. Enoch, "Electromagnetic coupling between a metal nanoparticle grating and a metallic surface," Opt. Lett. 30, 3404-3406 (2005).
[Crossref]

2004 (1)

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004).
[Crossref]

2003 (1)

2002 (2)

E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002).
[Crossref]

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[Crossref] [PubMed]

2000 (1)

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[Crossref]

1994 (1)

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994).
[Crossref]

1993 (1)

1992 (1)

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, "Surface plasmon resonance on gratings as a novel means for gas sensing," Sens. Actuators B 8, 155-160 (1992).
[Crossref]

1988 (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988).
[PubMed]

1986 (1)

1983 (1)

N. Garcia, "Exact calculations of p-polarized electromagnetic fields incident on grating surfaces: surface polariton resonances," Opt. Commun. 45, 307-310 (1983).
[Crossref]

1982 (1)

1977 (1)

W. Rothballer, "The influence of surface plasma oscillations on the diffraction orders of sinusoidal surface gratings," Opt. Commun. 20, 429-433 (1977).
[Crossref]

1972 (1)

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[Crossref]

1968 (1)

A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[Crossref]

Badenes, G.

Balzano, Q.

Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).

Bryan-Brown, G. P.

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, "Surface plasmon resonance on gratings as a novel means for gas sensing," Sens. Actuators B 8, 155-160 (1992).
[Crossref]

Byun, K. M.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[Crossref]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[Crossref] [PubMed]

Cesario, J.

Chang, S.-H.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Davis, C. C.

Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).

Enoch, S.

Erni, D.

Fendler, J. H.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004).
[Crossref]

Forsberg, E.

Garcia, N.

N. Garcia, "Exact calculations of p-polarized electromagnetic fields incident on grating surfaces: surface polariton resonances," Opt. Commun. 45, 307-310 (1983).
[Crossref]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[Crossref]

Gaylord, T. K.

Haes, A. J.

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[Crossref] [PubMed]

Hafner, C.

Haggans, C. W.

Han, Z.

He, S.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[Crossref]

Hung, Y.-J.

Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).

Hutter, E.

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004).
[Crossref]

Jory, M. J.

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994).
[Crossref]

Kim, D.

Kim, P. S.

Kim, S. J.

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[Crossref]

K. M. Byun, S. J. Kim, and D. Kim, "Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis," Opt. Express 13, 3737-3742 (2005).
[Crossref] [PubMed]

Kretschmann, E.

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[Crossref]

Lee, G.

Lenaerts, C.

Lermé, J.

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[Crossref]

Li, L.

Lion, Y.

Michel, F.

Moharam, M. G.

Moreno, E.

Oh, C. H.

Otto, A.

A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[Crossref]

Park, S.

Quidant, R.

Renotte, Y.

Rothballer, W.

W. Rothballer, "The influence of surface plasma oscillations on the diffraction orders of sinusoidal surface gratings," Opt. Commun. 20, 429-433 (1977).
[Crossref]

Sambles, J. R.

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994).
[Crossref]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, "Surface plasmon resonance on gratings as a novel means for gas sensing," Sens. Actuators B 8, 155-160 (1992).
[Crossref]

Schatz, G. C.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Shen, S.

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Smolyaninov, I. I.

Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).

Song, S. H.

Tilkens, B.

Vahldieck, R.

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[Crossref] [PubMed]

Vukusic, P. S.

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994).
[Crossref]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, "Surface plasmon resonance on gratings as a novel means for gas sensing," Sens. Actuators B 8, 155-160 (1992).
[Crossref]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Xia, Y.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[Crossref]

Yoon, S. J.

Adv. Mater. (1)

E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Adv. Mater. 16, 1685-1706 (2004).
[Crossref]

Appl. Opt. (1)

Eur. Phys. J. D (1)

J. Lermé, "Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: application to free and matrix-embedded noble metal clusters," Eur. Phys. J. D 10, 265-277 (2000).
[Crossref]

J. Am. Chem. Soc. (1)

A. J. Haes and R. P. Van Duyne, "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles," J. Am. Chem. Soc. 124, 10596-10604 (2002).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (6)

Nano Lett. (1)

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett. 5, 2034-2038 (2005).
[Crossref] [PubMed]

Opt. Commun. (3)

W. Rothballer, "The influence of surface plasma oscillations on the diffraction orders of sinusoidal surface gratings," Opt. Commun. 20, 429-433 (1977).
[Crossref]

N. Garcia, "Exact calculations of p-polarized electromagnetic fields incident on grating surfaces: surface polariton resonances," Opt. Commun. 45, 307-310 (1983).
[Crossref]

E. Kretschmann, "Decay of non radiative surface plasmons into light on rough silver films: comparison of experimental and theoretical results," Opt. Commun. 6, 185-187 (1972).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

Y.-J. Hung, I. I. Smolyaninov, Q. Balzano, and C. C. Davis, "Strong optical coupling effects through a continuous metal film with a surface dielectric grating," in Plasmonics: Metallic Nanostructures and Their Optical Properties III, M. I. Stockman, ed., Proc. SPIE 5927, 386-394 (2005).

Sens. Actuators B (4)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[Crossref]

P. S. Vukusic, G. P. Bryan-Brown, and J. R. Sambles, "Surface plasmon resonance on gratings as a novel means for gas sensing," Sens. Actuators B 8, 155-160 (1992).
[Crossref]

M. J. Jory, P. S. Vukusic, and J. R. Sambles, "Development of a prototype gas sensor using surface plasmon resonance on gratings," Sens. Actuators B 17, 203-209 (1994).
[Crossref]

K. M. Byun, D. Kim, and S. J. Kim, "Investigation of the profile effect on the sensitivity enhancement of nanowire-mediated localized surface plasmon resonance biosensors," Sens. Actuators B 117, 401-407 (2006).
[Crossref]

Z. Phys. (1)

A. Otto, "Excitation of surface plasma waves in silver by the method of frustrated total reflection," Z. Phys. 216, 398-410 (1968).
[Crossref]

Other (1)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics (Springer-Verlag, 1988).
[PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of a transmission-type SPR configuration with dielectric or metallic gratings. A thin metal film with a thickness of d m is deposited on a prism substrate. Dielectric or metallic gratings with a period Λ and a fill factor f are regularly patterned on the metal layer. TM-polarized light is incident through the prism substrate at a fixed wavelength of λ = 633   nm . The diffracted light transmits into a superstrate environment (air or water).

Fig. 2
Fig. 2

Transmission characteristics of a transmission-type SPR structure with a dielectric grating. The effects of the grating thickness on the transmittance efficiency (1T) and the resonance angles are shown. The silver metal film thickness is d m = 40   nm . The dielectric grating has a period of Λ = 600   nm and f = 0.5 .

Fig. 3
Fig. 3

Calculated reflectance and transmittance curves (1T) for a dielectric grating as a function of incidence angle. The grating thickness is d g = 180   nm . At θ in = 55.92 ° , T max = 65.28 % .

Fig. 4
Fig. 4

Transmission characteristics of a transmission-type SPR structure with a metallic grating. The effects of the grating thickness on the transmittance efficiency (1T) and the resonance angles are shown. The silver metal film thickness is d m = 40   nm . The silver metal grating has a period of Λ = 600   nm and f = 0.5 .

Fig. 5
Fig. 5

Calculated reflectance and transmittance curves (1T) for a dielectric grating as a function of incidence angle. The grating thickness is d g = 24   nm . At θ in = 43.34 ° , T max = 52.97 % .

Fig. 6
Fig. 6

(a) Transmittance and (b) linear regression analysis between resonance angle and superstrate refractive index of a transmission-type SPR sensor with a dielectric grating at d g = 180   nm in air. As the refractive index of the superstrate increases from 1.00 to 1.05 in steps of 0.01, the transmittance peak shifts from 55.92° to 58.51° in the direction of the arrow. θ in ( T max ) denotes the incidence angle at maximum transmittance.

Fig. 7
Fig. 7

(a) Transmittance and (b) linear regression analysis between resonance angle and superstrate refractive index of a transmission-type SPR sensor with a metallic grating at d g = 24   nm in air. As the refractive index of the superstrate increases, the transmittance peak shifts from 43.34° to 46.38°.

Fig. 8
Fig. 8

(a) Transmittance and (b) linear regression analysis between resonance angle and superstrate refractive index of a transmission-type SPR sensor with a dielectric grating at d g = 80   nm in water. As the refractive index of the superstrate increases from 1.33 to 1.38 in steps of 0.01, the transmittance peak shifts from 61.74° to 64.38° in the direction of the arrow.

Fig. 9
Fig. 9

(a) Transmittance and (b) linear regression analysis between resonance angle and superstrate refractive index of a transmission-type SPR sensor with a metallic grating at d g = 22   nm in water. As the refractive index of the superstrate increases, the transmittance peak shifts from 48.63° to 52.12°.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k SPR = k 0 ( ε d ε m ε d + ε m ) 1 / 2 = w c ε p   sin   θ SPR ,
k   sin   θ d = k SPR q K , q = 0, ± 1, ± 2 ,  …  ,
F O M = m ( eV / RIU ) FWHM ( eV ) T max ,

Metrics