Abstract

Recent advances in global biogeochemical research demonstrate a critical need for long-term ocean color satellite data records of consistent high quality. To achieve that quality, spaceborne instruments require on-orbit vicarious calibration, where the integrated instrument and atmospheric correction system is adjusted using in situ normalized water-leaving radiances, such as those collected by the marine optical buoy (MOBY). Unfortunately, well-characterized time-series of in situ data are scarce for many historical satellite missions, in particular, the NASA coastal zone color scanner (CZCS) and the ocean color and temperature scanner (OCTS). Ocean surface reflectance models (ORMs) accurately reproduce spectra observed in clear marine waters, using only chlorophyll a(Ca) as input, a measurement for which long-term in situ time series exist. Before recalibrating CZCS and OCTS using modeled radiances, however, we evaluate the approach with the Sea-viewing Wide-Field-of-view Sensor (SeaWiFS). Using annual Ca climatologies as input into an ORM, we derive SeaWiFS vicarious gains that differ from the operational MOBY gains by less than ±0.9% spectrally. In the context of generating decadal Ca climate data records, we quantify the downstream effects of using these modeled gains by generating satellite-to-in situ data product validation statistics for comparison with the operational SeaWiFS results. Finally, we apply these methods to the CZCS and OCTS ocean color time series.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. R. Gordon and M. H. Wang, "Retrieval of water-leaving radiance and aerosol optical-thickness over the oceans with SeaWiFS--a preliminary algorithm," Appl. Opt. 33, 443-452 (1994).
    [CrossRef] [PubMed]
  2. J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24954 (1998).
    [CrossRef]
  3. D. A. Antoine, A. Morel, H. R. Gordon, V. F. Banzon, and R. H. Evans, "Bridging ocean color observations of the 1980s and 2000s in search of long-term trends," J. Geophys. Res. 110, doi: (2005).
    [CrossRef]
  4. S. W. Bailey and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sen. Environ. 102, 12-23 (2006).
    [CrossRef]
  5. H. R. Gordon, "In-orbit calibration strategy for ocean color sensors," Remote Sens. Environ. 63, 265-278 (1998).
    [CrossRef]
  6. R. E. Eplee, Jr., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, "Calibration of SeaWiFS. II. Vicarious techniques," Appl. Opt. 40, 6701-6718 (2001).
    [CrossRef]
  7. B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, "Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry," Appl. Opt. 46, 5068-5082 (2007).
    [CrossRef] [PubMed]
  8. R. A. Barnes, R. E. Eplee Jr., F. S. Patt, H. H. Kieffer, T. C. Stone, G. Meister, J. J. Butler, and C. R. McClain, "Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model," Appl. Opt. 43, 5838-5854 (2004).
    [CrossRef] [PubMed]
  9. D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, "Validation of atmospheric correction over oceans," J. Geophys. Res. 102, 17209-17217 (1997).
    [CrossRef]
  10. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988a).
    [CrossRef]
  11. A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
    [CrossRef]
  12. A. Morel and L. Prieur, "Analysis of variations in ocean color," Limnol. Oceanogr. 22, 709-722 (1977).
    [CrossRef]
  13. T. P. Boyer, J. I. Antonov, H. E. Garcia, D. R. Johnson, R. A. Locamini, A. V. Mishonov, M. T. Pitcher, O. K. Baranova, and I. V. Smolyar, World Ocean Database 2005, S. Levitus, ed., NOAA Atlas NESDIS 60 (U.S. Government Printing Office, 2006).
  14. R. H. Evans and H. R. Gordon, "Coastal zone color scanner 'system calibration': a retrospective examination," J. Geophys. Res. 99, 7293-7307 (1994).
    [CrossRef]
  15. H. R. Gordon, O. B. Brown, and M. M. Jacobs, "Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975).
    [CrossRef] [PubMed]
  16. A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
    [CrossRef] [PubMed]
  17. H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Appl. Opt. 44, 241-248 (2005).
    [CrossRef] [PubMed]
  18. A. Morel and J. L. Mueller, "Normalized water-leaving radiance and remote sensing reflectance: bidirectional reflectance and other factors," in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. III: Radiometric Measurements and Data Analysis Protocols, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 32-59.
  19. H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
    [CrossRef]
  20. D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
    [CrossRef]
  21. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
    [CrossRef]
  22. E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution," J. Geophys. Res. 109, doi: (2004).
    [CrossRef]
  23. J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, "Use of optical scattering to discriminate particle types in coastal waters," Appl. Opt. 44, 1667-1680 (2005).
    [CrossRef] [PubMed]
  24. Y. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res. , Part A 39, 1835-1855 (1992).
    [CrossRef]
  25. D. Stramski and D. A. Kiefer, "Light scattering by microorganisms in the open ocean," Prog. Oceanogr. 28, 343-383 (1991).
    [CrossRef]
  26. D. A. Caron, H. G. Dam, P. Kremer, E. J. Lessard, L. P. Madin, T. C. Malone, J. M. Napp, E. R. Peele, M. R. Roman, and M. J. Youngbluth, "The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda," Deep-Sea Res. , Part I 42, 943-972 (1995).
    [CrossRef]
  27. D. M. Karl, "A sea of change: biogeochemical variability in the North Pacific subtropical gyre," Ecosystems 2, 181-214 (1999).
    [CrossRef]
  28. A. M. Ciotti, J. J. Cullen, and M. R. Lewis, "A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color," J. Geophys. Res. 104, 1559-1578 (1999).
    [CrossRef]
  29. H. Loisel, J.-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, "Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean," J. Geophys. Res. 111, doi: (2006).
    [CrossRef]
  30. A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplankton absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. 109, doi: (2004).
    [CrossRef]
  31. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, "Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models," J. Geophys. Res. 103, 31,033-31,044 (1998).
    [CrossRef]
  32. D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, "Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere," Geophys. Res. Lett. 32, doi: (2005).
    [CrossRef]
  33. L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
    [CrossRef]
  34. A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981).
    [CrossRef]
  35. M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, "Modeling the spectral shape of absorption by chomophoric dissolved organic matter," Mar. Chem. 89, 69-88 (2004).
    [CrossRef]
  36. H. R. Gordon, "Dependence of diffuse reflectance of natural waters on the Sun angle," Limnol. Oceanogr. 34, 1484-1489 (1989).
    [CrossRef]
  37. A. Morel and B. Gentili, "Radiation transport within oceanic (case 1) water," J. Geophys. Res. 109, doi: (2004).
    [CrossRef]
  38. P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. R. McClain, "Unique data repository facilitates ocean color satellite validation," EOS Trans. AGU 84, 379 (2003).
    [CrossRef]
  39. P. J. Werdell and S. W. Bailey, "An improved in situ bio-optical data set for ocean color development and satellite data product validation," Remote Sens. Environ. 98, 122-140 (2005).
    [CrossRef]
  40. A. V. Mishonov and W. D. Gardner, "Assessment and correction of the historical beam attenuation data from HOT--ALOHA & BATS stations," Oceanogr. 16, 51 (2003).
  41. S. B. Hooker, Hydrospheric and Biospheric Science Laboratory, NASA Goddard Space Flight Center, 614.8, Greenbelt, Maryland 20771 USA (personal communication, 2007).
  42. K. J. Voss and A. Morel, "Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus prediction," Limnol. Oceanogr. 50, 698-705 (2005).
    [CrossRef]
  43. M. J. Behrenfeld and E. Boss, "Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass," J. Mar. Res. 64, 431-451 (2006).
    [CrossRef]
  44. A. F. Michaels and A. H. Knap, "Overview of the US JGOFS Bermuda Atlantic time-series study and the hydrostation S program," Deep Sea Res. , Part II 43, 157-198 (1996).
    [CrossRef]
  45. D. M. Karl and R. Lukas, "The Hawaiian ocean time-series (HOT) program: Background, rationale, and field implementation," Deep Sea Res. , Part II 43, 129-156 (1996).
    [CrossRef]
  46. A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutzker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-522 (2002).
    [CrossRef]
  47. D. M. Glover, S. C. Doney, A. J. Mariano, R. H. Evans, and S. J. McCue, "Mesoscale variability in time series data: satellite-based estimates for the U.S. JGOFS Bermuda Atlantic time-series study (BATS) site," J. Geophys. Res. 107, doi: (2002).
    [CrossRef]
  48. T. L. Hayward, "The nutrient distribution and primary production in the central North Pacific," Deep-Sea Res. 34, 1593-1627 (1987).
    [CrossRef]
  49. A. F. Michaels, A. H. Knap, R. L. Dow, K. Gunderson, R. J. Johnson, J. Sorensen, A. Close, G. A. Knauer, S. E. Lohrenz, V. A. Asper, M. Tuel, and R. Bidigare, "Seasonal patterns of ocean biogeochemisty at the U.S. JGOFS Bermuda atlantic time-series study site," Deep-Sea Res. Part I 41, 1013-1038 (1994).
    [CrossRef]
  50. N. B. Nelson, D. A. Siegel, and A. F. Michaels, "Seasonal dynamics of colored dissolved material in the Sargasso Sea--implications for biogeochemistry and remote sensing," Deep-Sea. Res. Part I 45, 931-957 (1998).
    [CrossRef]
  51. M. E. Ondrusek, R. R. Bidigare, K. Waters, and D. M. Karl, "A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean," Deep-Sea Res. Part II 48, 1837-1864 (2001).
    [CrossRef]
  52. C. C. Trees, D. K. Clark, R. R. Bidigare, M. E. Ondrusek, and J. L. Mueller, "Accessory pigments versus chlorophyll a concentrations within the euphotic zone: a ubiquitous relationship," Limnol. Oceanogr. 45, 1130-1143 (2000).
    [CrossRef]
  53. S. B. Hooker, L. Van Heukelem, C. S. Thomas, H. Claustre, J. Ras, R. Barlow, H. Sessions, L. Schlüter, J. Perl, C. Trees, V. Stuart, E. Head, L. Clementson, J. Fishwick, C. Llewellyn, and J. Aiken, The Second SeaWiFS HPLC Analysis Round Robin Experiment (SeaHARRE-2) (NASA Goddard Space Flight Center, 2005).
  54. H. R. Gordon, "Calibration requirements and methodology for remote sensors viewing the oceans in the visible," Rem. Sens. Environ. 22, 103-126 (1987).
    [CrossRef]
  55. S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, "Stray-light correction algorithm for spectrographs," Metrologia 40, S81-S84 (2003).
    [CrossRef]
  56. B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, Jr., G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, "The continuity of ocean color measurements from SeaWiFS to MODIS," Proc. SPIE 5882, doi: (2005).
    [CrossRef]
  57. D. A. Antoine, J. M. André, and A. Morel, "Oceanic primary production. 2. Estimation at global scale from satellite (CZCS) chlorophyll," Global Biogeochem. Cycles 10, 57-70 (1996).
    [CrossRef]
  58. W. W. Gregg, F. S. Patt, and W. E. Esaias, "Initial analysis of ocean color data from the ocean color and temperature scanner. II. Geometric and radiometric analyses," Appl. Opt. 38, 5692-5702.
    [PubMed]
  59. W. W. Gregg, M. E. Conkright, J. E. O'Reilly, F. S. Patt, M. H. Wang, J. A. Yoder, and N. W. Casey, "NOAA-NASA coastal zone color scanner reanalysis effort," Appl. Opt. 41, 1615-1628 (2002).
    [CrossRef] [PubMed]
  60. M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, "Ocean-color optical property data derived from the Japanese ocean color and temperature scanner and the French polarization and directionality of the Earth's reflectances: a comparison study," Appl. Opt. 41, 974-990 (2002).
    [CrossRef] [PubMed]
  61. G. C. Feldman, W. D. Robinson, B. A. Franz, S. W. Bailey, N. Kuring, F. S. Patt, P. J. Werdell, and C. R. McClain, "The coastal zone color scanner," http://oceancolor.gsfc.nasa.gov/CZCS/ (2007).
  62. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, and W. W. Broenkow, "Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and coastal zone color scanner estimates," Appl. Opt. 22, 20-36 (1983a).
    [CrossRef] [PubMed]
  63. J. L. Mueller, "Nimbus-7 CZCS: Confirmation of its radiometric sensitivity decay rate through 1982," Appl. Opt. 24, 1043-1047 (1985).
    [CrossRef] [PubMed]
  64. B. A. Franz, E. J. Ainsworth, and S. Bailey, "SeaWiFS vicarious calibration: an alternative approach utilizing simultaneous in situ observations of oceanic and atmospheric optical properties," in In situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and Data QC and Analysis, G. S. Fargion, R. Barnes, and C. McClain, eds. (NASA Goddard Space Flight Center, 2001).
  65. J. M. André and A. Morel, "Atmospheric corrections and interpretations of marine radiances in CZCS imagery, revisited," Oceanol. Acta 14, 3-22 (1991).
  66. J. G. Acker, The Heritage of SeaWiFS: A Retrospective on the CZCS NIMBUS Experiment Team (NET) Program (NASA Goddard Space Flight Center, 1994).
  67. M. Shimada, H. Oaku, Y. Mitomi, H. Murakami, and H. Kawamura, "Calibration of the ocean color and temperature sensor," IEEE Trans. Geosci. Rem. Sens. 37, 1484-1495 (1999a).
    [CrossRef]
  68. G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, I. Slutzker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, C. Schuster, and A. Al Mandoos, "A network for standardized ocean color validation measurements," EOS Trans. AGU 87, 293 (2006).
    [CrossRef]
  69. E. Bosc, A. Bricaud, and D. Antoine, "Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations," Global Biogeochem. Cycles 18, doi: (2004).
    [CrossRef]
  70. S. W. Brown and B. C. Johnson, "Advances in radiometry for ocean color," Proc. SPIE 5151, 441-453 (2003).
    [CrossRef]
  71. G. Meister, E. J. Kwiatkowska, B. A. Franz, F. S. Patt, G. C. Feldman, and C. R. McClain, "Moderate-Resolution Imaging Spectroradiometer ocean color polarization correction," Appl. Opt. 44, 5524-5535 (2005).
    [CrossRef] [PubMed]

2007 (1)

2006 (4)

S. W. Bailey and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sen. Environ. 102, 12-23 (2006).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, I. Slutzker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, C. Schuster, and A. Al Mandoos, "A network for standardized ocean color validation measurements," EOS Trans. AGU 87, 293 (2006).
[CrossRef]

H. Loisel, J.-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, "Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean," J. Geophys. Res. 111, doi: (2006).
[CrossRef]

M. J. Behrenfeld and E. Boss, "Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass," J. Mar. Res. 64, 431-451 (2006).
[CrossRef]

2005 (8)

B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, Jr., G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, "The continuity of ocean color measurements from SeaWiFS to MODIS," Proc. SPIE 5882, doi: (2005).
[CrossRef]

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, "Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere," Geophys. Res. Lett. 32, doi: (2005).
[CrossRef]

P. J. Werdell and S. W. Bailey, "An improved in situ bio-optical data set for ocean color development and satellite data product validation," Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

K. J. Voss and A. Morel, "Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus prediction," Limnol. Oceanogr. 50, 698-705 (2005).
[CrossRef]

D. A. Antoine, A. Morel, H. R. Gordon, V. F. Banzon, and R. H. Evans, "Bridging ocean color observations of the 1980s and 2000s in search of long-term trends," J. Geophys. Res. 110, doi: (2005).
[CrossRef]

H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Appl. Opt. 44, 241-248 (2005).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, "Use of optical scattering to discriminate particle types in coastal waters," Appl. Opt. 44, 1667-1680 (2005).
[CrossRef] [PubMed]

G. Meister, E. J. Kwiatkowska, B. A. Franz, F. S. Patt, G. C. Feldman, and C. R. McClain, "Moderate-Resolution Imaging Spectroradiometer ocean color polarization correction," Appl. Opt. 44, 5524-5535 (2005).
[CrossRef] [PubMed]

2004 (7)

R. A. Barnes, R. E. Eplee Jr., F. S. Patt, H. H. Kieffer, T. C. Stone, G. Meister, J. J. Butler, and C. R. McClain, "Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model," Appl. Opt. 43, 5838-5854 (2004).
[CrossRef] [PubMed]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution," J. Geophys. Res. 109, doi: (2004).
[CrossRef]

E. Bosc, A. Bricaud, and D. Antoine, "Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations," Global Biogeochem. Cycles 18, doi: (2004).
[CrossRef]

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, "Modeling the spectral shape of absorption by chomophoric dissolved organic matter," Mar. Chem. 89, 69-88 (2004).
[CrossRef]

A. Morel and B. Gentili, "Radiation transport within oceanic (case 1) water," J. Geophys. Res. 109, doi: (2004).
[CrossRef]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplankton absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. 109, doi: (2004).
[CrossRef]

2003 (4)

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. R. McClain, "Unique data repository facilitates ocean color satellite validation," EOS Trans. AGU 84, 379 (2003).
[CrossRef]

A. V. Mishonov and W. D. Gardner, "Assessment and correction of the historical beam attenuation data from HOT--ALOHA & BATS stations," Oceanogr. 16, 51 (2003).

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, "Stray-light correction algorithm for spectrographs," Metrologia 40, S81-S84 (2003).
[CrossRef]

S. W. Brown and B. C. Johnson, "Advances in radiometry for ocean color," Proc. SPIE 5151, 441-453 (2003).
[CrossRef]

2002 (5)

2001 (4)

M. E. Ondrusek, R. R. Bidigare, K. Waters, and D. M. Karl, "A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean," Deep-Sea Res. Part II 48, 1837-1864 (2001).
[CrossRef]

A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

R. E. Eplee, Jr., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, "Calibration of SeaWiFS. II. Vicarious techniques," Appl. Opt. 40, 6701-6718 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

2000 (1)

C. C. Trees, D. K. Clark, R. R. Bidigare, M. E. Ondrusek, and J. L. Mueller, "Accessory pigments versus chlorophyll a concentrations within the euphotic zone: a ubiquitous relationship," Limnol. Oceanogr. 45, 1130-1143 (2000).
[CrossRef]

1999 (3)

D. M. Karl, "A sea of change: biogeochemical variability in the North Pacific subtropical gyre," Ecosystems 2, 181-214 (1999).
[CrossRef]

A. M. Ciotti, J. J. Cullen, and M. R. Lewis, "A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color," J. Geophys. Res. 104, 1559-1578 (1999).
[CrossRef]

M. Shimada, H. Oaku, Y. Mitomi, H. Murakami, and H. Kawamura, "Calibration of the ocean color and temperature sensor," IEEE Trans. Geosci. Rem. Sens. 37, 1484-1495 (1999a).
[CrossRef]

1998 (5)

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24954 (1998).
[CrossRef]

H. R. Gordon, "In-orbit calibration strategy for ocean color sensors," Remote Sens. Environ. 63, 265-278 (1998).
[CrossRef]

H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, "Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models," J. Geophys. Res. 103, 31,033-31,044 (1998).
[CrossRef]

N. B. Nelson, D. A. Siegel, and A. F. Michaels, "Seasonal dynamics of colored dissolved material in the Sargasso Sea--implications for biogeochemistry and remote sensing," Deep-Sea. Res. Part I 45, 931-957 (1998).
[CrossRef]

1997 (1)

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, "Validation of atmospheric correction over oceans," J. Geophys. Res. 102, 17209-17217 (1997).
[CrossRef]

1996 (3)

D. A. Antoine, J. M. André, and A. Morel, "Oceanic primary production. 2. Estimation at global scale from satellite (CZCS) chlorophyll," Global Biogeochem. Cycles 10, 57-70 (1996).
[CrossRef]

A. F. Michaels and A. H. Knap, "Overview of the US JGOFS Bermuda Atlantic time-series study and the hydrostation S program," Deep Sea Res. , Part II 43, 157-198 (1996).
[CrossRef]

D. M. Karl and R. Lukas, "The Hawaiian ocean time-series (HOT) program: Background, rationale, and field implementation," Deep Sea Res. , Part II 43, 129-156 (1996).
[CrossRef]

1995 (1)

D. A. Caron, H. G. Dam, P. Kremer, E. J. Lessard, L. P. Madin, T. C. Malone, J. M. Napp, E. R. Peele, M. R. Roman, and M. J. Youngbluth, "The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda," Deep-Sea Res. , Part I 42, 943-972 (1995).
[CrossRef]

1994 (3)

A. F. Michaels, A. H. Knap, R. L. Dow, K. Gunderson, R. J. Johnson, J. Sorensen, A. Close, G. A. Knauer, S. E. Lohrenz, V. A. Asper, M. Tuel, and R. Bidigare, "Seasonal patterns of ocean biogeochemisty at the U.S. JGOFS Bermuda atlantic time-series study site," Deep-Sea Res. Part I 41, 1013-1038 (1994).
[CrossRef]

R. H. Evans and H. R. Gordon, "Coastal zone color scanner 'system calibration': a retrospective examination," J. Geophys. Res. 99, 7293-7307 (1994).
[CrossRef]

H. R. Gordon and M. H. Wang, "Retrieval of water-leaving radiance and aerosol optical-thickness over the oceans with SeaWiFS--a preliminary algorithm," Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

1992 (1)

Y. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res. , Part A 39, 1835-1855 (1992).
[CrossRef]

1991 (2)

D. Stramski and D. A. Kiefer, "Light scattering by microorganisms in the open ocean," Prog. Oceanogr. 28, 343-383 (1991).
[CrossRef]

J. M. André and A. Morel, "Atmospheric corrections and interpretations of marine radiances in CZCS imagery, revisited," Oceanol. Acta 14, 3-22 (1991).

1989 (1)

H. R. Gordon, "Dependence of diffuse reflectance of natural waters on the Sun angle," Limnol. Oceanogr. 34, 1484-1489 (1989).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988a).
[CrossRef]

1987 (2)

H. R. Gordon, "Calibration requirements and methodology for remote sensors viewing the oceans in the visible," Rem. Sens. Environ. 22, 103-126 (1987).
[CrossRef]

T. L. Hayward, "The nutrient distribution and primary production in the central North Pacific," Deep-Sea Res. 34, 1593-1627 (1987).
[CrossRef]

1985 (1)

1983 (1)

1981 (2)

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

1977 (1)

A. Morel and L. Prieur, "Analysis of variations in ocean color," Limnol. Oceanogr. 22, 709-722 (1977).
[CrossRef]

1975 (1)

Appl. Opt. (14)

H. R. Gordon, O. B. Brown, and M. M. Jacobs, "Computed relationships between the inherent and apparent optical properties of a flat homogeneous ocean," Appl. Opt. 14, 417-427 (1975).
[CrossRef] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, and W. W. Broenkow, "Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison between ship determinations and coastal zone color scanner estimates," Appl. Opt. 22, 20-36 (1983a).
[CrossRef] [PubMed]

J. L. Mueller, "Nimbus-7 CZCS: Confirmation of its radiometric sensitivity decay rate through 1982," Appl. Opt. 24, 1043-1047 (1985).
[CrossRef] [PubMed]

H. R. Gordon and M. H. Wang, "Retrieval of water-leaving radiance and aerosol optical-thickness over the oceans with SeaWiFS--a preliminary algorithm," Appl. Opt. 33, 443-452 (1994).
[CrossRef] [PubMed]

W. W. Gregg, F. S. Patt, and W. E. Esaias, "Initial analysis of ocean color data from the ocean color and temperature scanner. II. Geometric and radiometric analyses," Appl. Opt. 38, 5692-5702.
[PubMed]

R. E. Eplee, Jr., W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, "Calibration of SeaWiFS. II. Vicarious techniques," Appl. Opt. 40, 6701-6718 (2001).
[CrossRef]

M. Wang, A. Isaacman, B. A. Franz, and C. R. McClain, "Ocean-color optical property data derived from the Japanese ocean color and temperature scanner and the French polarization and directionality of the Earth's reflectances: a comparison study," Appl. Opt. 41, 974-990 (2002).
[CrossRef] [PubMed]

W. W. Gregg, M. E. Conkright, J. E. O'Reilly, F. S. Patt, M. H. Wang, J. A. Yoder, and N. W. Casey, "NOAA-NASA coastal zone color scanner reanalysis effort," Appl. Opt. 41, 1615-1628 (2002).
[CrossRef] [PubMed]

A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
[CrossRef] [PubMed]

R. A. Barnes, R. E. Eplee Jr., F. S. Patt, H. H. Kieffer, T. C. Stone, G. Meister, J. J. Butler, and C. R. McClain, "Comparison of SeaWiFS measurements of the Moon with the U.S. Geological Survey lunar model," Appl. Opt. 43, 5838-5854 (2004).
[CrossRef] [PubMed]

H. R. Gordon, "Normalized water-leaving radiance: revisiting the influence of surface roughness," Appl. Opt. 44, 241-248 (2005).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, P. L. Donaghay, and S. A. Freeman, "Use of optical scattering to discriminate particle types in coastal waters," Appl. Opt. 44, 1667-1680 (2005).
[CrossRef] [PubMed]

G. Meister, E. J. Kwiatkowska, B. A. Franz, F. S. Patt, G. C. Feldman, and C. R. McClain, "Moderate-Resolution Imaging Spectroradiometer ocean color polarization correction," Appl. Opt. 44, 5524-5535 (2005).
[CrossRef] [PubMed]

B. A. Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, "Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry," Appl. Opt. 46, 5068-5082 (2007).
[CrossRef] [PubMed]

Deep Sea Res. (2)

A. F. Michaels and A. H. Knap, "Overview of the US JGOFS Bermuda Atlantic time-series study and the hydrostation S program," Deep Sea Res. , Part II 43, 157-198 (1996).
[CrossRef]

D. M. Karl and R. Lukas, "The Hawaiian ocean time-series (HOT) program: Background, rationale, and field implementation," Deep Sea Res. , Part II 43, 129-156 (1996).
[CrossRef]

Deep-Sea Res. (3)

T. L. Hayward, "The nutrient distribution and primary production in the central North Pacific," Deep-Sea Res. 34, 1593-1627 (1987).
[CrossRef]

D. A. Caron, H. G. Dam, P. Kremer, E. J. Lessard, L. P. Madin, T. C. Malone, J. M. Napp, E. R. Peele, M. R. Roman, and M. J. Youngbluth, "The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda," Deep-Sea Res. , Part I 42, 943-972 (1995).
[CrossRef]

Y. Ahn, A. Bricaud, and A. Morel, "Light backscattering efficiency and related properties of some phytoplankters," Deep-Sea Res. , Part A 39, 1835-1855 (1992).
[CrossRef]

Deep-Sea Res. Part I (1)

A. F. Michaels, A. H. Knap, R. L. Dow, K. Gunderson, R. J. Johnson, J. Sorensen, A. Close, G. A. Knauer, S. E. Lohrenz, V. A. Asper, M. Tuel, and R. Bidigare, "Seasonal patterns of ocean biogeochemisty at the U.S. JGOFS Bermuda atlantic time-series study site," Deep-Sea Res. Part I 41, 1013-1038 (1994).
[CrossRef]

Deep-Sea Res. Part II (1)

M. E. Ondrusek, R. R. Bidigare, K. Waters, and D. M. Karl, "A predictive model for estimating rates of primary production in the subtropical North Pacific Ocean," Deep-Sea Res. Part II 48, 1837-1864 (2001).
[CrossRef]

Deep-Sea. Res. Part I (1)

N. B. Nelson, D. A. Siegel, and A. F. Michaels, "Seasonal dynamics of colored dissolved material in the Sargasso Sea--implications for biogeochemistry and remote sensing," Deep-Sea. Res. Part I 45, 931-957 (1998).
[CrossRef]

Ecosystems (1)

D. M. Karl, "A sea of change: biogeochemical variability in the North Pacific subtropical gyre," Ecosystems 2, 181-214 (1999).
[CrossRef]

EOS Trans. AGU (2)

P. J. Werdell, S. Bailey, G. Fargion, C. Pietras, K. Knobelspiesse, G. Feldman, and C. R. McClain, "Unique data repository facilitates ocean color satellite validation," EOS Trans. AGU 84, 379 (2003).
[CrossRef]

G. Zibordi, B. Holben, S. B. Hooker, F. Mélin, J.-F. Berthon, I. Slutzker, D. Giles, D. Vandemark, H. Feng, K. Rutledge, C. Schuster, and A. Al Mandoos, "A network for standardized ocean color validation measurements," EOS Trans. AGU 87, 293 (2006).
[CrossRef]

Geophys. Res. Lett. (1)

D. A. Siegel, S. Maritorena, N. B. Nelson, M. J. Behrenfeld, and C. R. McClain, "Colored dissolved organic matter and its influence on the satellite-based characterization of the ocean biosphere," Geophys. Res. Lett. 32, doi: (2005).
[CrossRef]

Global Biogeochem. Cycles (2)

D. A. Antoine, J. M. André, and A. Morel, "Oceanic primary production. 2. Estimation at global scale from satellite (CZCS) chlorophyll," Global Biogeochem. Cycles 10, 57-70 (1996).
[CrossRef]

E. Bosc, A. Bricaud, and D. Antoine, "Seasonal and interannual variability in algal biomass and primary production in the Mediterranean Sea, as derived from 4 years of SeaWiFS observations," Global Biogeochem. Cycles 18, doi: (2004).
[CrossRef]

IEEE Trans. Geosci. Rem. Sens. (1)

M. Shimada, H. Oaku, Y. Mitomi, H. Murakami, and H. Kawamura, "Calibration of the ocean color and temperature sensor," IEEE Trans. Geosci. Rem. Sens. 37, 1484-1495 (1999a).
[CrossRef]

J. Atmos. Sci. (1)

A. Smirnov, B. N. Holben, Y. J. Kaufman, O. Dubovik, T. F. Eck, I. Slutzker, C. Pietras, and R. N. Halthore, "Optical properties of atmospheric aerosol in maritime environments," J. Atmos. Sci. 59, 501-522 (2002).
[CrossRef]

J. Geophys. Res. (14)

D. M. Glover, S. C. Doney, A. J. Mariano, R. H. Evans, and S. J. McCue, "Mesoscale variability in time series data: satellite-based estimates for the U.S. JGOFS Bermuda Atlantic time-series study (BATS) site," J. Geophys. Res. 107, doi: (2002).
[CrossRef]

D. K. Clark, H. R. Gordon, K. J. Voss, Y. Ge, W. Broenkow, and C. Trees, "Validation of atmospheric correction over oceans," J. Geophys. Res. 102, 17209-17217 (1997).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988a).
[CrossRef]

A. Morel and S. Maritorena, "Bio-optical properties of oceanic waters: a reappraisal," J. Geophys. Res. 106, 7163-7180 (2001).
[CrossRef]

A. M. Ciotti, J. J. Cullen, and M. R. Lewis, "A semi-analytical model of the influence of phytoplankton community structure on the relationship between light attenuation and ocean color," J. Geophys. Res. 104, 1559-1578 (1999).
[CrossRef]

H. Loisel, J.-M. Nicolas, A. Sciandra, D. Stramski, and A. Poteau, "Spectral dependency of optical backscattering by marine particles from satellite remote sensing of the global ocean," J. Geophys. Res. 111, doi: (2006).
[CrossRef]

A. Bricaud, H. Claustre, J. Ras, and K. Oubelkheir, "Natural variability of phytoplankton absorption in oceanic waters: influence of the size structure of algal populations," J. Geophys. Res. 109, doi: (2004).
[CrossRef]

A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, "Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: analysis and implications for bio-optical models," J. Geophys. Res. 103, 31,033-31,044 (1998).
[CrossRef]

A. Morel and B. Gentili, "Radiation transport within oceanic (case 1) water," J. Geophys. Res. 109, doi: (2004).
[CrossRef]

R. H. Evans and H. R. Gordon, "Coastal zone color scanner 'system calibration': a retrospective examination," J. Geophys. Res. 99, 7293-7307 (1994).
[CrossRef]

J. E. O'Reilly, S. Maritorena, B. G. Mitchell, D. A. Siegel, K. L. Carder, S. A. Garver, M. Kahru, and C. R. McClain, "Ocean color chlorophyll algorithms for SeaWiFS," J. Geophys. Res. 103, 24937-24954 (1998).
[CrossRef]

D. A. Antoine, A. Morel, H. R. Gordon, V. F. Banzon, and R. H. Evans, "Bridging ocean color observations of the 1980s and 2000s in search of long-term trends," J. Geophys. Res. 110, doi: (2005).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "Particulate backscattering ratio at LEO 15 and its use to study particle composition and distribution," J. Geophys. Res. 109, doi: (2004).
[CrossRef]

J. Mar. Res. (1)

M. J. Behrenfeld and E. Boss, "Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass," J. Mar. Res. 64, 431-451 (2006).
[CrossRef]

Limnol. Oceanogr. (7)

K. J. Voss and A. Morel, "Bidirectional reflectance function for oceanic waters with varying chlorophyll concentrations: measurements versus prediction," Limnol. Oceanogr. 50, 698-705 (2005).
[CrossRef]

A. Morel and L. Prieur, "Analysis of variations in ocean color," Limnol. Oceanogr. 22, 709-722 (1977).
[CrossRef]

C. C. Trees, D. K. Clark, R. R. Bidigare, M. E. Ondrusek, and J. L. Mueller, "Accessory pigments versus chlorophyll a concentrations within the euphotic zone: a ubiquitous relationship," Limnol. Oceanogr. 45, 1130-1143 (2000).
[CrossRef]

H. R. Gordon, "Dependence of diffuse reflectance of natural waters on the Sun angle," Limnol. Oceanogr. 34, 1484-1489 (1989).
[CrossRef]

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials," Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, "Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains," Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

H. Loisel and A. Morel, "Light scattering and chlorophyll concentration in case 1 waters: a reexamination," Limnol. Oceanogr. 43, 847-858 (1998).
[CrossRef]

Mar. Chem. (1)

M. S. Twardowski, E. Boss, J. M. Sullivan, and P. L. Donaghay, "Modeling the spectral shape of absorption by chomophoric dissolved organic matter," Mar. Chem. 89, 69-88 (2004).
[CrossRef]

Metrologia (1)

S. W. Brown, B. C. Johnson, M. E. Feinholz, M. A. Yarbrough, S. J. Flora, K. R. Lykke, and D. K. Clark, "Stray-light correction algorithm for spectrographs," Metrologia 40, S81-S84 (2003).
[CrossRef]

Oceanogr. (1)

A. V. Mishonov and W. D. Gardner, "Assessment and correction of the historical beam attenuation data from HOT--ALOHA & BATS stations," Oceanogr. 16, 51 (2003).

Oceanol. Acta (1)

J. M. André and A. Morel, "Atmospheric corrections and interpretations of marine radiances in CZCS imagery, revisited," Oceanol. Acta 14, 3-22 (1991).

Proc. SPIE (2)

S. W. Brown and B. C. Johnson, "Advances in radiometry for ocean color," Proc. SPIE 5151, 441-453 (2003).
[CrossRef]

B. A. Franz, P. J. Werdell, G. Meister, S. W. Bailey, R. E. Eplee, Jr., G. C. Feldman, E. Kwiatkowska, C. R. McClain, F. S. Patt, and D. Thomas, "The continuity of ocean color measurements from SeaWiFS to MODIS," Proc. SPIE 5882, doi: (2005).
[CrossRef]

Prog. Oceanogr. (2)

D. Stramski and D. A. Kiefer, "Light scattering by microorganisms in the open ocean," Prog. Oceanogr. 28, 343-383 (1991).
[CrossRef]

D. Stramski, E. Boss, D. Bogucki, and K. J. Voss, "The role of seawater constituents in light backscattering in the ocean," Prog. Oceanogr. 61, 27-56 (2004).
[CrossRef]

Rem. Sens. Environ. (1)

H. R. Gordon, "Calibration requirements and methodology for remote sensors viewing the oceans in the visible," Rem. Sens. Environ. 22, 103-126 (1987).
[CrossRef]

Remote Sen. Environ. (1)

S. W. Bailey and P. J. Werdell, "A multi-sensor approach for the on-orbit validation of ocean color satellite data products," Remote Sen. Environ. 102, 12-23 (2006).
[CrossRef]

Remote Sens. Environ. (2)

H. R. Gordon, "In-orbit calibration strategy for ocean color sensors," Remote Sens. Environ. 63, 265-278 (1998).
[CrossRef]

P. J. Werdell and S. W. Bailey, "An improved in situ bio-optical data set for ocean color development and satellite data product validation," Remote Sens. Environ. 98, 122-140 (2005).
[CrossRef]

Other (7)

S. B. Hooker, Hydrospheric and Biospheric Science Laboratory, NASA Goddard Space Flight Center, 614.8, Greenbelt, Maryland 20771 USA (personal communication, 2007).

S. B. Hooker, L. Van Heukelem, C. S. Thomas, H. Claustre, J. Ras, R. Barlow, H. Sessions, L. Schlüter, J. Perl, C. Trees, V. Stuart, E. Head, L. Clementson, J. Fishwick, C. Llewellyn, and J. Aiken, The Second SeaWiFS HPLC Analysis Round Robin Experiment (SeaHARRE-2) (NASA Goddard Space Flight Center, 2005).

T. P. Boyer, J. I. Antonov, H. E. Garcia, D. R. Johnson, R. A. Locamini, A. V. Mishonov, M. T. Pitcher, O. K. Baranova, and I. V. Smolyar, World Ocean Database 2005, S. Levitus, ed., NOAA Atlas NESDIS 60 (U.S. Government Printing Office, 2006).

A. Morel and J. L. Mueller, "Normalized water-leaving radiance and remote sensing reflectance: bidirectional reflectance and other factors," in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Vol. III: Radiometric Measurements and Data Analysis Protocols, J. L. Mueller, G. S. Fargion, and C. R. McClain, eds. (NASA Goddard Space Flight Center, 2003), pp. 32-59.

B. A. Franz, E. J. Ainsworth, and S. Bailey, "SeaWiFS vicarious calibration: an alternative approach utilizing simultaneous in situ observations of oceanic and atmospheric optical properties," in In situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and Data QC and Analysis, G. S. Fargion, R. Barnes, and C. McClain, eds. (NASA Goddard Space Flight Center, 2001).

J. G. Acker, The Heritage of SeaWiFS: A Retrospective on the CZCS NIMBUS Experiment Team (NET) Program (NASA Goddard Space Flight Center, 1994).

G. C. Feldman, W. D. Robinson, B. A. Franz, S. W. Bailey, N. Kuring, F. S. Patt, P. J. Werdell, and C. R. McClain, "The coastal zone color scanner," http://oceancolor.gsfc.nasa.gov/CZCS/ (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Near-surface C a measurements from the BATS site for years 1998–2004 (symbols) and a smoothed fit to these data (solid line). To generate this fit, we first organized the C a by day of year and then sorted them into biweekly bins (resulting in 26 sequential 14-day collections). We then calculated the mean of the semi-interquartile range for each bin, and smoothed this mean time-series by recalculating the three-element central moving-average for each bin. Several undersampled bins whose means proved to be outliers precipitated the latter time-series filter. Finally, we redisplayed the means temporally using the central day number for each bin, and used cubic spline interpolation to estimate C a for every day of the year (roots of residual mean squares of 0.066 and 0.010 for BATS and HOT, respectively). Data are displayed as a function of day of year (a) and a multiannual time-series (b). Using the generalized fit, C a may be estimated from the day of year. The sample sizes are 45, 41, 43, 54, 64, 58, and 9 for 1998 through 2004, respectively.

Fig. 2
Fig. 2

Near-surface C a measurements from the HOT site for years 1998–2004 (symbols) and a smoothed fit to these data (solid line; see the caption of Fig. 1 for details). Data are displayed as a function of day of year (a) and a multiannual time-series (b). Using the generalized fit, C a may be estimated from the day of year. The sample sizes are 24, 22, 19, 21, 19, 20, and 22 for 1998 through 2004, respectively.

Fig. 3
Fig. 3

Validation of the ORM using in situ measurements collected at the BATS and HOT sites. In situ stations with a given C a level were identified (± an appropriate threshold value) and corresponding “exact” R r s were averaged (solid circles) for comparison with the ORM output for θ 0 = 15 ° (dotted line), 30° (solid line), and 45° (dashed line). In situ standard deviations are shown as vertical bars. Sample sizes in figure titles.

Fig. 4
Fig. 4

Comparison of model estimates (solid lines) with in situ measurements (open circles) for K d ( 443 ) (per Eq. (6)) and c p ( 660 ) (per Eq. (6) of Loisel and Morel [19]). Results for K d ( 443 ) are presented in panels (a) and (b), where the horizontal dashed lines demark the pure seawater value, and results for c p ( 660 ) are presented in panels (c) and (d). Results for BATS are presented in panels (a) and (c), and for HOT in (b) and (d).

Fig. 5
Fig. 5

Comparison of the generalized fits shown in Figs. 1 and 2 with similar curves generated using the NOAA WOD05 C a data set for the BATS and HOT regions. The fits for Figs. 1 and 2 are redisplayed as dashed and solid lines for BATS and HOT, respectively. The WOD05 data are presented as solid circles and open squares for BATS and HOT, respectively.

Fig. 6
Fig. 6

Comparison of modeled L w n ( 443 ) (solid lines) with in situ measurements (open circles) for the BATS (top) and HOT (bottom) sites. Here, C a from the climatological expressions for C a presented in Figs. 1 and 2 were used as input into the ORM. The L w n units are μW   cm 2 nm 1 sr 1 . Data are displayed as a function of the day of the year; 443   nm was highlighted given its predominance in C a absorption spectra.

Fig. 7
Fig. 7

SeaWiFS ORM-derived g i ( 443 ) as a function of time (a), solar zenith angle (b), and sensor zenith angle (c). The solid line indicates the final combined g ¯ ( 443 ) for the ORM, and the dashed lines delineate the boundary of g ¯ ± 2 σ (two standard deviations encompass 95 % of the data). Likewise, the shaded region demarks g ¯ ± 2 σ for MOBY. Only g i falling within the series semi-interquartile range are shown (symbols), as we limit the final calculation of g ¯ to these data.

Fig. 8
Fig. 8

SeaWiFS ORM-derived g i ( 555 ) as a function of time (a), solar zenith angle (b), and sensor zenith angle (c). The solid line indicates the final combined g ¯ ( 555 ) for the SSR model, and the dashed lines delineate the boundary of g ¯ ± 2 σ (two standard deviations encompass 95 % of the data). Likewise, the shaded region demarks g ¯ ± 2 σ for MOBY. Only g i falling within the series semi-interquartile range are shown (symbols), as we limit the final calculation of g ¯ to these data.

Fig. 9
Fig. 9

Spectral distribution of g ¯ for MOBY and the ORM.

Fig. 10
Fig. 10

SeaWiFS “matchup” validation results for L w n ( 443 ) , L w n ( 555 ) , and C a for the MOBY (top row) and ORM (bottom row) derived g ¯ . Data are limited to deep-water ( > 1000   m ) stations and were acquired and processed following Bailey and Werdell [4]. The L w n units are μW   cm 2 nm 1 sr 1 and the C a units are mg   m 3 . The dotted lines indicate a 1:1 relationship, the dashed lines show the comparisons' regressions, and the bold solid lines show quantile-quantile comparisons, where sorted (ascending order) in situ data are compared with sorted satellite data.

Fig. 11
Fig. 11

Comparison of SeaWiFS L w n (top) and C a (bottom) trends for global deep water ( > 1000   m ) using the MOBY (solid lines) and ORM (solid circles) derived g ¯ . In the top panel, from top to bottom, the L w n are 412, 443, 490, 510, and 555   nm . As described in Franz et al. [56], global level-3 daily L w n and C a files were generated, then spatially averaged into approximately 9-by-9 km resolution equal-area bins, then temporally averaged into four-day composites. To minimize data storage requirements and maximize computational efficiency, only one four-day composite per month is considered (i.e., four weeks separate each composite), leaving a total of 107 L w n and C a composites in the time-series.

Fig. 12
Fig. 12

For (a), a comparison of common SeaWiFS C a validation “matchups” retrieved using the MOBY and ORM derived g ¯ . The sample size (N), regression slope (slope) and correlation coefficient ( r 2 ) , bias (bias), and root mean square (rms) are provided. The dotted line indicates a 1:1 relationship and the dashed line shows the comparison's regression. For (b), the relative distributions of C a , in percent frequency, for common bins in a four-day composite (August 2005) processed using the MOBY (solid circles) and ORM (open squares) derived g ¯ . The statistical mode for each is also provided.

Fig. 13
Fig. 13

Temporal degradation of CZCS bands 1–3 as derived by EG94 (thin black lines) and by the ORM (thick gray lines). Solid lines denote band 1 ( 443   nm ) , dashed lines denote band 2 ( 520   nm ) , and dotted-dashed lines denote band 3 ( 550   nm ) .

Fig. 14
Fig. 14

Validation results for CZCS and OCTS L w n and C a . The sample size (N), satellite-to-in situ ratio (Ratio), and absolute median percent difference relative to the in situ measurement (MPD) are provided in each panel. The dotted lines indicate a 1:1 relationship. The L w n units are μW   cm 2 nm 1 sr 1 and the C a units are mg   m 3 .

Tables (9)

Tables Icon

Table 1 SeaWiFS g ¯ and Standard Deviations a Calculated for MOBY and the ORM at the BATS and HOTS Sites

Tables Icon

Table 2 SeaWiFS Calibration Verification Statistics for the Scenes Used to Derive g ¯

Tables Icon

Table 3 Percent Differences a Between the MOBY and ORM g ¯

Tables Icon

Table 4 Percent Differences a Between the HOT and BATS ORM g ¯

Tables Icon

Table 5 SeaWiFS Validation Statistics for a Deep-Water Data Set (>1000 m) Using the MOBY-Derived g ¯

Tables Icon

Table 6 SeaWiFS Validation Statistics for the Data Set Presented in Table 5 Using the ORM-Derived g ¯

Tables Icon

Table 7 Nine-Year Means for the SeaWiFS Deep-Water and Trophic Time-Series Generated Using the MOBY and ORM g ¯

Tables Icon

Table 8 CZCS g ¯ and Standard Deviations a (in Parentheses) Calculated Using the ORM at the BATS Site

Tables Icon

Table 9 OCTS g ¯ and Standard Deviations (in Parentheses) Calculated Using the ORM at the BATS and HOT Sites

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

R ( 0 ) = f b b a + b b ,
L w n = F 0 R ( 0 ) Q ,
b p ( 550 ) = B C a E .
b b p ( λ ) = { 0.002 + 0.01 [ 0.5 0.25 log 10 C a ] } × b p ( 550 ) ( λ 550 ) v ,
v = 1 0.768 log 10 C a ,
K d = χ C a e + K w ,
a = 0.962 K d μ d ( 1 R ( 0 ) f ) .

Metrics