Abstract

A simple and efficient interference method for fabricating highly symmetric two-dimensional (2-D) quasi-periodic structures (QPSs) is theoretically and experimentally demonstrated. With a three-beam interference technique, one can fabricate a periodic 2-D structure having sixfold symmetry. When this structure is multiduplicated into other specific orientations its combination results in a QPS with multifold symmetry. By use of n exposures with a rotation angle of 60°/n, one can create a 2-D QPS with six n-fold symmetry. The QPS with a super high symmetry level, as high as 60-fold, is demonstrated for the first time to the best of our knowledge. The diffraction pattern of a QPS is consistent with the Fourier transform calculation. The fabricated structures should be useful for many applications, such as isotropic bandgap materials and extraction enhancement of light-emitting diodes.

© 2007 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription