Abstract

Circular arrays of plasma filaments induced by femtosecond laser pulses in atmospheric air are shown to support guided modes of electromagnetic radiation in the centimeter and millimeter wavelength range. With the refractive index of laser-induced filaments being lower than the refractive index of nonionized air, arrays of such filaments can serve as a structured waveguide cladding, providing an index guiding of radar signals in a nonionized gas region. In spite of attenuation of radar radiation induced by plasma absorption, filament-array waveguides are shown to enhance radar signal transmission relative to freely propagating radar beams.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. I. Skolnik, Introduction to Radar Principles (McGraw-Hill, 1980).
  2. http://www.darpa.mil/.
  3. R. M. Measures, Laser Remote Sensing--Fundamental and Applications (Wiley Interscience, 1984).
  4. M. N. Shneider and R. B. Miles, "Microwave diagnostics of small plasma objects," J. Appl. Phys. 98, 033301 (2005).
    [CrossRef]
  5. Z. Zhang, M. N. Shneider, and R. B. Miles, "Microwave diagnostics of small volume laser-induced plasma," Presented at the AIAA 44th Aerospace Sciences Meeting and Exhibit, Reno, Nevada (AIAA, 2006), AIAA paper 2006-1357.
  6. A. M. Zheltikov, M. N. Shneider, and R. B. Miles, "Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere," Appl. Phys. B 83, 149-153 (2006).
    [CrossRef]
  7. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, "Self-channeling of high-peak-power femtosecond laser pulses in air," Opt. Lett. 20, 73-75 (1995).
    [CrossRef] [PubMed]
  8. E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, "Conical emission from self-guided femtosecond pulses in air," Opt. Lett. 21, 62-64 (1996).
    [CrossRef] [PubMed]
  9. B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, "Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615-1621 (1999).
    [CrossRef]
  10. P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, and L. Wöste, "Remote sensing of the atmosphere using ultrashort laser pulses," Appl. Phys. B 71, 573-580 (2000).
    [CrossRef]
  11. H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "Laser applications for atmospheric pollution monitoring," Eur. Phys. J. D 20, 183-188 (2002).
  12. G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, "Towards a supercontinuum-based infrared lidar," Appl. Phys. B 77, 357-359 (2003).
    [CrossRef]
  13. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woeste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003).
    [CrossRef] [PubMed]
  14. V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)," Appl. Phys. B 77, 149-165 (2003).
    [CrossRef]
  15. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, "Kilometer-range nonlinear propagation of femtosecond laser pulses," Phys. Rev. E 69, 036607 (2004).
    [CrossRef]
  16. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system," Appl. Phys. B 78, 535-537 (2004).
    [CrossRef]
  17. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J.-P. Wolf, L. Bergé, and S. Skupin, "UV-supercontinuum generated by femtosecond pulse filamentation in air: meter-range experiments versus numerical simulations," Appl. Phys. B 82, 341-345 (2006).
    [CrossRef]
  18. A. V. Gurevich, N. D. Borisov, and G. M. Milikh, Physics of Microwave Discharge, Artificially Ionized Regions in the Atmosphere (Gordon and Breach, 1997).
  19. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
    [CrossRef]
  20. V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, 1961).
  21. S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004).
    [CrossRef] [PubMed]
  22. A. J. Campillo, J. E. Pearson, S. L. Shapiro, and N. J. Terrell Jr., "Fresnel diffraction effects in the design of high-power laser systems," Appl. Phys. Lett. 23, 85-88 (1973).
    [CrossRef]
  23. V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, "Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse," Appl. Phys. B 80, 267-275 (2004).
    [CrossRef]
  24. D. E. Roskey, M. Kolesik, J. V. Moloney, and E. M. Wright, "The role of linear power partitioning in beam filamentation," Appl. Phys. B 86, 249-258 (2007).
    [CrossRef]

2007 (1)

D. E. Roskey, M. Kolesik, J. V. Moloney, and E. M. Wright, "The role of linear power partitioning in beam filamentation," Appl. Phys. B 86, 249-258 (2007).
[CrossRef]

2006 (2)

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, "Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere," Appl. Phys. B 83, 149-153 (2006).
[CrossRef]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J.-P. Wolf, L. Bergé, and S. Skupin, "UV-supercontinuum generated by femtosecond pulse filamentation in air: meter-range experiments versus numerical simulations," Appl. Phys. B 82, 341-345 (2006).
[CrossRef]

2005 (1)

M. N. Shneider and R. B. Miles, "Microwave diagnostics of small plasma objects," J. Appl. Phys. 98, 033301 (2005).
[CrossRef]

2004 (4)

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, "Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse," Appl. Phys. B 80, 267-275 (2004).
[CrossRef]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, "Kilometer-range nonlinear propagation of femtosecond laser pulses," Phys. Rev. E 69, 036607 (2004).
[CrossRef]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

S. Guo, F. Wu, S. Albin, H. Tai, and R. Rogowski, "Loss and dispersion analysis of microstructured fibers by finite-difference method," Opt. Express 12, 3341-3352 (2004).
[CrossRef] [PubMed]

2003 (4)

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef]

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, "Towards a supercontinuum-based infrared lidar," Appl. Phys. B 77, 357-359 (2003).
[CrossRef]

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woeste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)," Appl. Phys. B 77, 149-165 (2003).
[CrossRef]

2002 (1)

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "Laser applications for atmospheric pollution monitoring," Eur. Phys. J. D 20, 183-188 (2002).

2000 (1)

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, and L. Wöste, "Remote sensing of the atmosphere using ultrashort laser pulses," Appl. Phys. B 71, 573-580 (2000).
[CrossRef]

1999 (1)

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, "Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615-1621 (1999).
[CrossRef]

1996 (1)

1995 (1)

1973 (1)

A. J. Campillo, J. E. Pearson, S. L. Shapiro, and N. J. Terrell Jr., "Fresnel diffraction effects in the design of high-power laser systems," Appl. Phys. Lett. 23, 85-88 (1973).
[CrossRef]

Appl. Phys. B (8)

A. M. Zheltikov, M. N. Shneider, and R. B. Miles, "Radar return enhanced by a grating of species-selective multiphoton ionization as a probe for trace impurities in the atmosphere," Appl. Phys. B 83, 149-153 (2006).
[CrossRef]

P. Rairoux, H. Schillinger, S. Niedermeier, M. Rodriguez, F. Ronneberger, R. Sauerbrey, B. Stein, D. Waite, C. Wedekind, H. Wille, and L. Wöste, "Remote sensing of the atmosphere using ultrashort laser pulses," Appl. Phys. B 71, 573-580 (2000).
[CrossRef]

G. Méjean, J. Kasparian, E. Salmon, J. Yu, J.-P. Wolf, R. Bourayou, R. Sauerbrey, M. Rodriguez, L. Wöste, H. Lehmann, B. Stecklum, U. Laux, J. Eislöffel, A. Scholz, and A. P. Hatzes, "Towards a supercontinuum-based infrared lidar," Appl. Phys. B 77, 357-359 (2003).
[CrossRef]

V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, "Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation)," Appl. Phys. B 77, 149-165 (2003).
[CrossRef]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J.-P. Wolf, "Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system," Appl. Phys. B 78, 535-537 (2004).
[CrossRef]

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, R. Ackermann, J.-P. Wolf, L. Bergé, and S. Skupin, "UV-supercontinuum generated by femtosecond pulse filamentation in air: meter-range experiments versus numerical simulations," Appl. Phys. B 82, 341-345 (2006).
[CrossRef]

V. P. Kandidov, N. Akozbek, M. Scalora, O. G. Kosareva, A. V. Nyakk, Q. Luo, S. A. Hosseini, and S. L. Chin, "Towards a control of multiple filamentation by spatial regularization of a high-power femtosecond laser pulse," Appl. Phys. B 80, 267-275 (2004).
[CrossRef]

D. E. Roskey, M. Kolesik, J. V. Moloney, and E. M. Wright, "The role of linear power partitioning in beam filamentation," Appl. Phys. B 86, 249-258 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

A. J. Campillo, J. E. Pearson, S. L. Shapiro, and N. J. Terrell Jr., "Fresnel diffraction effects in the design of high-power laser systems," Appl. Phys. Lett. 23, 85-88 (1973).
[CrossRef]

Eur. Phys. J. D (1)

H. Wille, M. Rodriguez, J. Kasparian, D. Mondelain, J. Yu, A. Mysyrowicz, R. Sauerbrey, J.-P. Wolf, and L. Wöste, "Laser applications for atmospheric pollution monitoring," Eur. Phys. J. D 20, 183-188 (2002).

J. Appl. Phys. (1)

M. N. Shneider and R. B. Miles, "Microwave diagnostics of small plasma objects," J. Appl. Phys. 98, 033301 (2005).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Phys. Plasmas (1)

B. La Fontaine, F. Vidal, Z. Jiang, C. Y. Chien, D. Comtois, A. Desparois, T. W. Johnston, J.-C. Kieffer, H. Pépin, and H. P. Mercure, "Filamentation of ultrashort pulse laser beams resulting from their propagation over long distances in air," Phys. Plasmas 6, 1615-1621 (1999).
[CrossRef]

Phys. Rev. E (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J.-P. Wolf, "Kilometer-range nonlinear propagation of femtosecond laser pulses," Phys. Rev. E 69, 036607 (2004).
[CrossRef]

Science (2)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Woeste, "White-light filaments for atmospheric analysis," Science 301, 61-64 (2003).
[CrossRef] [PubMed]

P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
[CrossRef]

Other (6)

V. L. Ginzburg, Propagation of Electromagnetic Waves in Plasma (Gordon and Breach, 1961).

A. V. Gurevich, N. D. Borisov, and G. M. Milikh, Physics of Microwave Discharge, Artificially Ionized Regions in the Atmosphere (Gordon and Breach, 1997).

Z. Zhang, M. N. Shneider, and R. B. Miles, "Microwave diagnostics of small volume laser-induced plasma," Presented at the AIAA 44th Aerospace Sciences Meeting and Exhibit, Reno, Nevada (AIAA, 2006), AIAA paper 2006-1357.

M. I. Skolnik, Introduction to Radar Principles (McGraw-Hill, 1980).

http://www.darpa.mil/.

R. M. Measures, Laser Remote Sensing--Fundamental and Applications (Wiley Interscience, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(Color online) Refractive index n (curve 1) and normalized absorption coefficient κ = α λ / 2 π (curve 2) calculated as functions of radiation wavelength for T e 1   eV , N e 10 14 cm 3 , and N m = 2.7 × 10 19 cm 3 . The inset shows a sketch of a filament-array waveguide consisting of a nonionized air core and two rings of filaments serving as a waveguide cladding.

Fig. 2
Fig. 2

(Color online) The wavelength dependence of the fraction η of mode power concentrated in the core of a filament-array waveguide with a core diameter of 1.2 cm and a cladding consisting of one ring of filaments ( T e 1   eV , N e 10 14 cm 3 ) with a diameter of 0.8 cm each. The inset shows the transverse field-intensity profile in the fundamental mode of the filament-array waveguide.

Fig. 3
Fig. 3

(Color online) Attenuation length for the fundamental mode in a filament-array waveguide with a core diameter of 1.2 cm and a cladding consisting of one ring of filaments ( T e 1   eV , N e 10 14 cm 3 ) with a diameter of 0.8 cm each as a function of radiation wavelength. Calculations have been performed with (curve 1) and without (curve 2) plasma-absorption loss in the cladding.

Fig. 4
Fig. 4

(Color online) Transmission enhancement factor ξ as a function of the propagation distance for filament-array waveguides with parameters summarized in the first (1), second (2), and third (3) rows in Table 1. Inset 1 shows the attenuation length of a waveguide formed by 18 identical filaments with a diameter of 1.8 cm calculated as a function of the core diameter with the diameter of individual filaments kept constant. Inset 2 presents the factor ξ as a function of the propagation distance for a filament-array waveguide formed by 18 identical filaments with a diameter of 1.8 cm bounding a core with a diameter of 18 cm. Radiation wavelength is 1 cm.

Tables (1)

Tables Icon

Table 1 Filament-Array Waveguides ( Te  ≈ 1 eV, N m = 2.7 × 1019 cm−3, Ne  ≈ 1013 cm−3) for the Transmission of 1 cm Radar Radiation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n ¯ 2 = ( n + i κ ) 2 = 1 + ω p 2 i ω ν ω 2 ,
ν = ν c + ν m ,

Metrics