Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

All-optical switch based on two-pump four-wave mixing in fibers without a frequency shift

Not Accessible

Your library or personal account may give you access

Abstract

We report an all-optical switch based on two-pump four-wave mixing in fibers. The switched signal is not shifted in frequency in this scheme. For different signal wavelengths, the pump wavelengths and powers can be optimized to achieve the best performance. The principle of how to design the switch is discussed in detail. A high extinction ratio of 60  dB is obtained when the pump parameters are optimized by a genetic algorithm that exhibits good convergence property and high computing efficiency. The effect of zero-dispersion wavelength fluctuations along the fiber on the switch is analyzed.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
Raman enhanced polarization-insensitive wavelength conversion based on two-pump four-wave mixing

Xiaojie Guo and Chester Shu
Opt. Express 24(25) 28648-28658 (2016)

Four-wave mixing in microstructure fiber

Jay E. Sharping, Marco Fiorentino, Ayodeji Coker, Prem Kumar, and Robert S. Windeler
Opt. Lett. 26(14) 1048-1050 (2001)

Simple four-wave-mixing-based method for measuring the ratio between the third- and fourth-order dispersion in optical fibers

J. M. Chávez Boggio and H. L. Fragnito
J. Opt. Soc. Am. B 24(9) 2046-2054 (2007)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved