Abstract

We report an all-optical switch based on two-pump four-wave mixing in fibers. The switched signal is not shifted in frequency in this scheme. For different signal wavelengths, the pump wavelengths and powers can be optimized to achieve the best performance. The principle of how to design the switch is discussed in detail. A high extinction ratio of 60  dB is obtained when the pump parameters are optimized by a genetic algorithm that exhibits good convergence property and high computing efficiency. The effect of zero-dispersion wavelength fluctuations along the fiber on the switch is analyzed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
    [CrossRef] [PubMed]
  2. X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2004).
    [CrossRef]
  3. A. E. Miroshnichenko, I. Pinkevych, and Y. S. Kivshar, "Tunable all-optical switching in periodic structures with liquid-crystal defects," Opt. Express 14, 2839-2844 (2006).
    [CrossRef] [PubMed]
  4. G. Ma, J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, "Ultrafast all-optical switching in one-dimensional photonic crystal with two defects," Opt. Express 14, 858-865 (2006).
    [CrossRef] [PubMed]
  5. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, and J. R. Simpson, "Soliton switching in a fiber nonlinear loop mirror," Opt. Lett. 14, 811-813 (1989).
    [CrossRef] [PubMed]
  6. N. J. Doran and D. Wood, "Soliton processing element for all-optical switching and logic," J. Opt. Soc. Am. B 4, 1843-1846 (1987).
    [CrossRef]
  7. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  8. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
    [CrossRef]
  9. P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, "16 Gbit/s all-optical demultiplexing using four-wave mixing," Electron. Lett. 27, 922-924 (1991).
    [CrossRef]
  10. P. O. Hedekvist and P. A. Andrekson, "Demonstration of fibre four-wave mixing optical demultiplexing with 19 dB parametric amplification," Electron. Lett. 32, 830-831 (1996).
    [CrossRef]
  11. J. Hansryd and P. A. Andrekson, "O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 13, 732-734 (2001).
    [CrossRef]
  12. G. Cappellini and S. Trillo, "Third order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991).
    [CrossRef]
  13. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
    [CrossRef]
  14. K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).
    [CrossRef]
  15. L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations: the Initial Value Problem (Freeman, 1975).
  16. K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
    [CrossRef]
  17. J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
    [CrossRef]
  18. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).
  19. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
    [CrossRef]
  20. L. Provino, A. Mussot, E. Lantz, T. Sylvestre, and H. Maillotte, "Broadband and flat parametric amplifiers with a multisection dispersion-tailored nonlinear fiber arrangement," J. Opt. Soc. Am. B 20, 1532-1537 (2003).
    [CrossRef]
  21. M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, "Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra," Opt. Lett. 21, 1354-1356 (1996).
    [CrossRef] [PubMed]

2006 (2)

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2004).
[CrossRef]

2003 (1)

2002 (4)

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

2001 (1)

J. Hansryd and P. A. Andrekson, "O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 13, 732-734 (2001).
[CrossRef]

1996 (2)

P. O. Hedekvist and P. A. Andrekson, "Demonstration of fibre four-wave mixing optical demultiplexing with 19 dB parametric amplification," Electron. Lett. 32, 830-831 (1996).
[CrossRef]

M. E. Marhic, Y. Park, F. S. Yang, and L. G. Kazovsky, "Broadband fiber-optical parametric amplifiers and wavelength converters with low-ripple Chebyshev gain spectra," Opt. Lett. 21, 1354-1356 (1996).
[CrossRef] [PubMed]

1994 (1)

K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).
[CrossRef]

1992 (1)

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

1991 (2)

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, "16 Gbit/s all-optical demultiplexing using four-wave mixing," Electron. Lett. 27, 922-924 (1991).
[CrossRef]

G. Cappellini and S. Trillo, "Third order three-wave mixing in single-mode fibers: exact solutions and spatial instability effects," J. Opt. Soc. Am. B 8, 824-838 (1991).
[CrossRef]

1989 (1)

1987 (1)

Electron. Lett. (2)

P. A. Andrekson, N. A. Olsson, J. R. Simpson, T. Tanbun-Ek, R. A. Logan, and M. Haner, "16 Gbit/s all-optical demultiplexing using four-wave mixing," Electron. Lett. 27, 922-924 (1991).
[CrossRef]

P. O. Hedekvist and P. A. Andrekson, "Demonstration of fibre four-wave mixing optical demultiplexing with 19 dB parametric amplification," Electron. Lett. 32, 830-831 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, "Parametric amplifiers driven by two pump waves," IEEE J. Sel. Top. Quantum Electron. 8, 538-547 (2002).
[CrossRef]

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, "Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments," IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[CrossRef]

J. Hansryd, P. A. Andrekson, M. Westlund, J. Li, and P. O. Hedekvist, "Fiber-based optical parametric amplifiers and their applications," IEEE J. Sel. Top. Quantum Electron. 8, 506-520 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K. Inoue, "Tunable and selective wavelength conversion using fiber four-wave mixing with two pump lights," IEEE Photon. Technol. Lett. 6, 1451-1453 (1994).
[CrossRef]

J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photon. Technol. Lett. 14, 77-79 (2002).
[CrossRef]

J. Hansryd and P. A. Andrekson, "O-TDM demultiplexer with 40-dB gain based on a fiber optical parametric amplifier," IEEE Photon. Technol. Lett. 13, 732-734 (2001).
[CrossRef]

J. Lightwave Technol. (1)

K. Inoue, "Four-wave mixing in an optical fiber in the zero-dispersion wavelength region," J. Lightwave Technol. 10, 1553-1561 (1992).
[CrossRef]

J. Opt. Soc. Am. B (3)

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, "All-optical control of light on a silicon chip," Nature 431, 1081-1084 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

X. Yang, D. Lenstra, G. D. Khoe, and H. J. S. Dorren, "Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier," Opt. Commun. 223, 169-179 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (3)

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, 1989).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

L. F. Shampine and M. K. Gordon, Computer Solution of Ordinary Differential Equations: the Initial Value Problem (Freeman, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

FWM driven by two pumps; ω 0 is the zero-dispersion frequency and ω c is the central frequency: FWM used as (a) an amplifier and (b) an optical switch.

Fig. 2
Fig. 2

Signal extinction ratio at the output of the fiber with different fiber lengths; the parameters are listed in the text.

Fig. 3
Fig. 3

Signal extinction ratio at the switch output with different fiber nonlinear coefficients. Other parameters are fixed and are the same as those in Fig. 2.

Fig. 4
Fig. 4

Signal extinction ratio at the switch output with different powers of pump2. Other parameters are the same as those in Fig. 2.

Fig. 5
Fig. 5

Signal extinction ratio at the switch output with different wavelengths of pump2. Other parameters are the same as those in Fig. 2.

Fig. 6
Fig. 6

Switching performance obtained with the optimized parameters by use of the GA. The extinction ratio is less than 60   dB at the output.

Fig. 7
Fig. 7

ZDW versus fiber length with two examples of random longitudinal fluctuations.

Fig. 8
Fig. 8

Signal ER at the switch output in the presence of random longitudinal ZDW fluctuations (corresponding to the fluctuations in Fig. 7).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d A p 1 d z = 1 / 2 α A p 1 + i γ [ | A p 1 | 2 + 2 ( | A p 2 | 2 + | A s | 2 + | A i | 2 ) ] A p 1 + 2 i γ A s * A p 2 A i e i Δ β z ,
d A p 2 d z = 1 / 2 α A p 2 + i γ [ | A p 2 | 2 + 2 ( | A s | 2 + | A i | 2 + | A p 1 | 2 ) ] A p 2 + 2 i γ A i * A s A p 1 e i Δ β z ,
d A s d z = 1 / 2 α A s + i γ [ | A s | 2 + 2 ( | A i | 2 + | A p 1 | 2 + | A p 2 | 2 ) ] A s + 2 i γ A p 1 * A i A p 2 e i Δ β z ,
d A i d z = 1 / 2 α A i + i γ [ | A i | 2 + 2 ( | A p 1 | 2 + | A p 2 | 2 + | A s | 2 ) ] A i + 2 i γ A p 2 * A p 1 A s e i Δ β z ,
Δ β = β 2 [ ( Δ ω s ) 2 ( Δ ω p ) 2 ] + β 4 [ ( Δ ω s ) 4 ( Δ ω p ) 4 ] / 12 .
Δ λ 0 = λ c + 2 π c [ β 2 ( ideal ) + A 1 n = 1 m sin ( κ 1, n z + φ 1 , n ) + A 2 n = 1 m sin ( κ 2, n z + φ 2 , n ) ] λ c 2 × D slope λ 0 ( ideal ) ,

Metrics