Abstract

We report the efficient Raman laser system with the wavelength of 1.54  μm from a passively Q-switched Nd:YAG laser with high-pressure methane gas. It has been known that the stimulated Brillouin scattering (SBS) prevents the Raman conversion. The efficiency of the Raman conversion, however, has been greatly enhanced with a specially designed lens to use a backward-stimulated Brillouin in our scheme. The special lens has a focal length of 12 cm, and a maximum conversion efficiency of 51% has been obtained with the first-Stokes energy of 32   mJ and the residual pump energy of 30   mJ at 1400 psi. Comparing two resonators with different focal lengths of the lenses, we have found that backward-SBS can be greatly enhanced by use of the shorter focal length of 12 cm, and the enhanced backward-SBS helps to increase the conversion efficiency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. QE-22, 332-336 (1986).
    [CrossRef]
  2. P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
    [CrossRef]
  3. V. S. Gorelik, A. D. Kudryavtseva, and N. V. Chernega, "Stimulated infrared emission under excitation of condensed molecular dielectrics with giant pulses of a ruby laser," J. Russ. Laser Res. 27, 81-91 (2006).
    [CrossRef]
  4. S. M. Spuler and S. D. Mayor, "Raman shifter optimized for lidar at 1.5 μm wavelength," Appl. Opt. 46, 2990-2995 (2007).
    [CrossRef] [PubMed]
  5. D. C. Hanna and D. J. Pointer, "A high power, short pulse stimulated Raman source at 1.54 μm," Opt. Commun. 60, 187-190 (1986).
    [CrossRef]
  6. Z. Chu, U. N. Singh, and T. D. Wilkerson, "A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation," Opt. Commun. 75, 173-178 (1990).
    [CrossRef]
  7. W. Carnuth and T. Trickl, "A Powerful eye-safe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 mm radiation," Rev. Sci. Instrum. 65, 3324-3331 (1994).
    [CrossRef]
  8. J. D. Spinhirne, S. Chudamani, J. F. Cavanaugh, and J. L. Bufton, "Aerosol and cloud backscatter at 1.06, 1.54, and 0.53 m by airborne hard-target-calibrated Nd:YAG methane Raman lidar," Appl. Opt. 36, 3475-3490 (1997).
    [CrossRef] [PubMed]
  9. V. A. Orlovich, P. A. Apanasevich, S. A. Batishche, V. N. Belyi, A. A. Bui, A. S. Grabchikov, N. S. Kazak, and A. V. Kachinskii, "High-power sources of eye-safe radiation, based on nonlinear-optical conversion of the radiation of YAG:Nd lasers," J. Opt. Technol. 67, 984-989 (2000).
    [CrossRef]
  10. Y. S. Choi, "Asymmetry of the forward and backward Raman gain coefficient at 1.54 μm in methane," Appl. Opt. 40, 1925-1930 (2001).
    [CrossRef]
  11. Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).
  12. D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
    [CrossRef]
  13. C. G. Parazzoli, W. W. Buchman, and R. D. Stultz, "Numerical and experimental investigation of a stimulated Raman half resonator," IEEE J. Quantum Electron. QE-24, 872-880 (1988).
    [CrossRef]
  14. X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
    [CrossRef]
  15. J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
    [CrossRef]
  16. R. W. Hellwarth, "Theory of stimulated Raman scattering," Phys. Rev. 130, 1850-1852 (1963).
    [CrossRef]
  17. Y. R. Shen and N. Bloembergen, "Theory of simulated Brillouin and Raman scattering," Phys. Rev. A 137, 1787-1805 (1965).
    [CrossRef]
  18. W. H. Lowdermilk and G. I. Kachen, "Spatial and temporal intensity distribution of stimulated Raman emission," J. Appl. Phys. 50, 3871-3878 (1979).
    [CrossRef]
  19. K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
    [CrossRef]
  20. M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
    [CrossRef]
  21. P. Sen and P. K. Sen, "Correlation and competition between SRS and SBS process," Phy. Rev. B 33, 1427-1429 (1986).
    [CrossRef]
  22. K. Sentrayan and V. Kushawaha, "Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2," J. Phys. D: Appl. Phys. 26, 1554-1560 (1993).
    [CrossRef]
  23. A. Kazzaz and S. Ruschin, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
    [CrossRef]
  24. X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
    [CrossRef]
  25. J. C. van den Heuvel, F. J. M. van putten, and R. J. L. Lerou, "Experimental and Numerical Stimulated Raman Scattering in an astigmatic focus," IEEE J. Quantum Electron. 29, 2267-2272 (1993).
    [CrossRef]
  26. H. J. Kong, Y. G. Jeon, and J. K. Kim, "Efficient Raman conversion through backward stimulated Brillouin scattering," Appl. Opt. 34, 993-995 (1995).
    [CrossRef] [PubMed]
  27. D. I. Chang, J. Y. Lee, and H. J. Kong, "Raman shifting of Nd:YAP laser radiation with a Brillouin resonator coupled with a Raman half-resonator," Appl. Opt. 36, 1177-1179 (1997).
    [CrossRef] [PubMed]
  28. D. I. Chang, J. Y. Lee, and H. J. Kong, "Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half-resonator," Jpn. J. Appl. Phys. 36, 4316-4319 (1997).
    [CrossRef]
  29. B. Ya. Zeldovich and V. V. Shkupov, "Reversal of the wave front of light in the case of depolarized pumping," Sov. Phys. JETP 48, 214-219 (1978).
  30. I. D. Carr and D. C. Hanna, "Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering," Appl. Phys. B 36, 83-92 (1985).
    [CrossRef]
  31. P. P. Pashinin and E. J. Shklovsky, "Solid-state lasers with stimulated Brillouin scattering mirrors operating in the repetitive-pulse mode," J. Opt. Soc. Am. B 5, 1957-1961 (1988).
    [CrossRef]
  32. J. J. Ottusch and D. A. Rockwell, "Stimulated Brillouin scattering phase-conjugation fidelity fluctuations," Opt. Lett. 16, 369-371 (1991).
    [CrossRef] [PubMed]
  33. Y. Taira, K. Ide, and H. Takuma, "Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1-50 atm region by inverse Raman spectroscopy," Chem. Phys. Lett. 91, 299-302 (1982).
    [CrossRef]
  34. V. Nassisi and A. Pecoraro, "Stimulated Brillouin and Raman scattering for the generation of short excimer laser pulses," IEEE J. Quantum Electron. 29, 2547-2552 (1993).
    [CrossRef]

2007 (1)

2006 (3)

V. S. Gorelik, A. D. Kudryavtseva, and N. V. Chernega, "Stimulated infrared emission under excitation of condensed molecular dielectrics with giant pulses of a ruby laser," J. Russ. Laser Res. 27, 81-91 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

2005 (1)

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

2001 (1)

2000 (1)

1997 (3)

1995 (1)

1994 (2)

W. Carnuth and T. Trickl, "A Powerful eye-safe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 mm radiation," Rev. Sci. Instrum. 65, 3324-3331 (1994).
[CrossRef]

A. Kazzaz and S. Ruschin, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

1993 (3)

K. Sentrayan and V. Kushawaha, "Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2," J. Phys. D: Appl. Phys. 26, 1554-1560 (1993).
[CrossRef]

J. C. van den Heuvel, F. J. M. van putten, and R. J. L. Lerou, "Experimental and Numerical Stimulated Raman Scattering in an astigmatic focus," IEEE J. Quantum Electron. 29, 2267-2272 (1993).
[CrossRef]

V. Nassisi and A. Pecoraro, "Stimulated Brillouin and Raman scattering for the generation of short excimer laser pulses," IEEE J. Quantum Electron. 29, 2547-2552 (1993).
[CrossRef]

1992 (1)

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

1991 (1)

1990 (1)

Z. Chu, U. N. Singh, and T. D. Wilkerson, "A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation," Opt. Commun. 75, 173-178 (1990).
[CrossRef]

1989 (1)

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

1988 (2)

C. G. Parazzoli, W. W. Buchman, and R. D. Stultz, "Numerical and experimental investigation of a stimulated Raman half resonator," IEEE J. Quantum Electron. QE-24, 872-880 (1988).
[CrossRef]

P. P. Pashinin and E. J. Shklovsky, "Solid-state lasers with stimulated Brillouin scattering mirrors operating in the repetitive-pulse mode," J. Opt. Soc. Am. B 5, 1957-1961 (1988).
[CrossRef]

1986 (4)

D. C. Hanna and D. J. Pointer, "A high power, short pulse stimulated Raman source at 1.54 μm," Opt. Commun. 60, 187-190 (1986).
[CrossRef]

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. QE-22, 332-336 (1986).
[CrossRef]

P. Sen and P. K. Sen, "Correlation and competition between SRS and SBS process," Phy. Rev. B 33, 1427-1429 (1986).
[CrossRef]

1985 (1)

I. D. Carr and D. C. Hanna, "Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering," Appl. Phys. B 36, 83-92 (1985).
[CrossRef]

1982 (1)

Y. Taira, K. Ide, and H. Takuma, "Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1-50 atm region by inverse Raman spectroscopy," Chem. Phys. Lett. 91, 299-302 (1982).
[CrossRef]

1979 (1)

W. H. Lowdermilk and G. I. Kachen, "Spatial and temporal intensity distribution of stimulated Raman emission," J. Appl. Phys. 50, 3871-3878 (1979).
[CrossRef]

1978 (1)

B. Ya. Zeldovich and V. V. Shkupov, "Reversal of the wave front of light in the case of depolarized pumping," Sov. Phys. JETP 48, 214-219 (1978).

1969 (1)

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

1968 (1)

P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
[CrossRef]

1965 (1)

Y. R. Shen and N. Bloembergen, "Theory of simulated Brillouin and Raman scattering," Phys. Rev. A 137, 1787-1805 (1965).
[CrossRef]

1963 (1)

R. W. Hellwarth, "Theory of stimulated Raman scattering," Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

Apanasevich, P. A.

Avizionis, P. V.

P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
[CrossRef]

Batishche, S. A.

Belyi, V. N.

Bloembergen, N.

Y. R. Shen and N. Bloembergen, "Theory of simulated Brillouin and Raman scattering," Phys. Rev. A 137, 1787-1805 (1965).
[CrossRef]

Brink, D. J.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

Buchman, W. W.

C. G. Parazzoli, W. W. Buchman, and R. D. Stultz, "Numerical and experimental investigation of a stimulated Raman half resonator," IEEE J. Quantum Electron. QE-24, 872-880 (1988).
[CrossRef]

Bufton, J. L.

Bui, A. A.

Burger, H. P.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

Carnuth, W.

W. Carnuth and T. Trickl, "A Powerful eye-safe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 mm radiation," Rev. Sci. Instrum. 65, 3324-3331 (1994).
[CrossRef]

Carr, I. D.

I. D. Carr and D. C. Hanna, "Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering," Appl. Phys. B 36, 83-92 (1985).
[CrossRef]

Cavanaugh, J. F.

Chang, D. I.

D. I. Chang, J. Y. Lee, and H. J. Kong, "Raman shifting of Nd:YAP laser radiation with a Brillouin resonator coupled with a Raman half-resonator," Appl. Opt. 36, 1177-1179 (1997).
[CrossRef] [PubMed]

D. I. Chang, J. Y. Lee, and H. J. Kong, "Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half-resonator," Jpn. J. Appl. Phys. 36, 4316-4319 (1997).
[CrossRef]

Chernega, N. V.

V. S. Gorelik, A. D. Kudryavtseva, and N. V. Chernega, "Stimulated infrared emission under excitation of condensed molecular dielectrics with giant pulses of a ruby laser," J. Russ. Laser Res. 27, 81-91 (2006).
[CrossRef]

Choi, Y. S.

Chu, Z.

Z. Chu, U. N. Singh, and T. D. Wilkerson, "A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation," Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Chudamani, S.

de Kock, T. N.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

Giordmaine, J. A.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Gorelik, V. S.

V. S. Gorelik, A. D. Kudryavtseva, and N. V. Chernega, "Stimulated infrared emission under excitation of condensed molecular dielectrics with giant pulses of a ruby laser," J. Russ. Laser Res. 27, 81-91 (2006).
[CrossRef]

Grabchikov, A. S.

Greve, P.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

Gross, H.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

Guenther, A. H.

P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
[CrossRef]

Hanna, D. C.

D. C. Hanna and D. J. Pointer, "A high power, short pulse stimulated Raman source at 1.54 μm," Opt. Commun. 60, 187-190 (1986).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. QE-22, 332-336 (1986).
[CrossRef]

I. D. Carr and D. C. Hanna, "Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering," Appl. Phys. B 36, 83-92 (1985).
[CrossRef]

Heimlich, R. T.

P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
[CrossRef]

Hellwarth, R. W.

R. W. Hellwarth, "Theory of stimulated Raman scattering," Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

Hua, X.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

Ide, K.

Y. Taira, K. Ide, and H. Takuma, "Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1-50 atm region by inverse Raman spectroscopy," Chem. Phys. Lett. 91, 299-302 (1982).
[CrossRef]

Jeon, Y. G.

Jungling, K. C.

P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
[CrossRef]

Kachen, G. I.

W. H. Lowdermilk and G. I. Kachen, "Spatial and temporal intensity distribution of stimulated Raman emission," J. Appl. Phys. 50, 3871-3878 (1979).
[CrossRef]

Kachinskii, A. V.

Kaiser, W.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Kazak, N. S.

Kazzaz, A.

A. Kazzaz and S. Ruschin, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Kim, J. K.

Kong, H. J.

Kudryavtseva, A. D.

V. S. Gorelik, A. D. Kudryavtseva, and N. V. Chernega, "Stimulated infrared emission under excitation of condensed molecular dielectrics with giant pulses of a ruby laser," J. Russ. Laser Res. 27, 81-91 (2006).
[CrossRef]

Kushawaha, V.

K. Sentrayan and V. Kushawaha, "Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2," J. Phys. D: Appl. Phys. 26, 1554-1560 (1993).
[CrossRef]

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Lasser, Th.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

Lee, J. Y.

D. I. Chang, J. Y. Lee, and H. J. Kong, "Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half-resonator," Jpn. J. Appl. Phys. 36, 4316-4319 (1997).
[CrossRef]

D. I. Chang, J. Y. Lee, and H. J. Kong, "Raman shifting of Nd:YAP laser radiation with a Brillouin resonator coupled with a Raman half-resonator," Appl. Opt. 36, 1177-1179 (1997).
[CrossRef] [PubMed]

Leng, J.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

Lerou, R. J. L.

J. C. van den Heuvel, F. J. M. van putten, and R. J. L. Lerou, "Experimental and Numerical Stimulated Raman Scattering in an astigmatic focus," IEEE J. Quantum Electron. 29, 2267-2272 (1993).
[CrossRef]

Lowdermilk, W. H.

W. H. Lowdermilk and G. I. Kachen, "Spatial and temporal intensity distribution of stimulated Raman emission," J. Appl. Phys. 50, 3871-3878 (1979).
[CrossRef]

Maier, M.

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

Major, L.

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Mayor, S. D.

Michael, A.

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Nassisi, V.

V. Nassisi and A. Pecoraro, "Stimulated Brillouin and Raman scattering for the generation of short excimer laser pulses," IEEE J. Quantum Electron. 29, 2547-2552 (1993).
[CrossRef]

Niederwald, H. J.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

Orlovich, V. A.

Ottusch, J. J.

Parazzoli, C. G.

C. G. Parazzoli, W. W. Buchman, and R. D. Stultz, "Numerical and experimental investigation of a stimulated Raman half resonator," IEEE J. Quantum Electron. QE-24, 872-880 (1988).
[CrossRef]

Pashinin, P. P.

Pecoraro, A.

V. Nassisi and A. Pecoraro, "Stimulated Brillouin and Raman scattering for the generation of short excimer laser pulses," IEEE J. Quantum Electron. 29, 2547-2552 (1993).
[CrossRef]

Pointer, D. J.

D. C. Hanna and D. J. Pointer, "A high power, short pulse stimulated Raman source at 1.54 μm," Opt. Commun. 60, 187-190 (1986).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. QE-22, 332-336 (1986).
[CrossRef]

Pratt, D. J.

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. QE-22, 332-336 (1986).
[CrossRef]

Preussler, D. R.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

Rockwell, D. A.

Ruschin, S.

A. Kazzaz and S. Ruschin, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

Sen, P.

P. Sen and P. K. Sen, "Correlation and competition between SRS and SBS process," Phy. Rev. B 33, 1427-1429 (1986).
[CrossRef]

Sen, P. K.

P. Sen and P. K. Sen, "Correlation and competition between SRS and SBS process," Phy. Rev. B 33, 1427-1429 (1986).
[CrossRef]

Sentrayan, K.

K. Sentrayan and V. Kushawaha, "Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2," J. Phys. D: Appl. Phys. 26, 1554-1560 (1993).
[CrossRef]

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

Sha, G.

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

Shen, Y. R.

Y. R. Shen and N. Bloembergen, "Theory of simulated Brillouin and Raman scattering," Phys. Rev. A 137, 1787-1805 (1965).
[CrossRef]

Shklovsky, E. J.

Shkupov, V. V.

B. Ya. Zeldovich and V. V. Shkupov, "Reversal of the wave front of light in the case of depolarized pumping," Sov. Phys. JETP 48, 214-219 (1978).

Singh, U. N.

Z. Chu, U. N. Singh, and T. D. Wilkerson, "A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation," Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Spinhirne, J. D.

Spuler, S. M.

Strauss, J. A.

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

Stultz, R. D.

C. G. Parazzoli, W. W. Buchman, and R. D. Stultz, "Numerical and experimental investigation of a stimulated Raman half resonator," IEEE J. Quantum Electron. QE-24, 872-880 (1988).
[CrossRef]

Taira, Y.

Y. Taira, K. Ide, and H. Takuma, "Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1-50 atm region by inverse Raman spectroscopy," Chem. Phys. Lett. 91, 299-302 (1982).
[CrossRef]

Takuma, H.

Y. Taira, K. Ide, and H. Takuma, "Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1-50 atm region by inverse Raman spectroscopy," Chem. Phys. Lett. 91, 299-302 (1982).
[CrossRef]

Trickl, T.

W. Carnuth and T. Trickl, "A Powerful eye-safe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 mm radiation," Rev. Sci. Instrum. 65, 3324-3331 (1994).
[CrossRef]

Ulrich, W.

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

van den Heuvel, J. C.

J. C. van den Heuvel, F. J. M. van putten, and R. J. L. Lerou, "Experimental and Numerical Stimulated Raman Scattering in an astigmatic focus," IEEE J. Quantum Electron. 29, 2267-2272 (1993).
[CrossRef]

van putten, F. J. M.

J. C. van den Heuvel, F. J. M. van putten, and R. J. L. Lerou, "Experimental and Numerical Stimulated Raman Scattering in an astigmatic focus," IEEE J. Quantum Electron. 29, 2267-2272 (1993).
[CrossRef]

Wilkerson, T. D.

Z. Chu, U. N. Singh, and T. D. Wilkerson, "A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation," Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Yang, H.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

Zeldovich, B. Ya.

B. Ya. Zeldovich and V. V. Shkupov, "Reversal of the wave front of light in the case of depolarized pumping," Sov. Phys. JETP 48, 214-219 (1978).

Zhang, C.

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (4)

I. D. Carr and D. C. Hanna, "Performance of a Nd:YAG oscillator/amplifier with phase-conjugation via stimulated Brillouin scattering," Appl. Phys. B 36, 83-92 (1985).
[CrossRef]

J. Leng, G. Sha, X. Hua, H. Yang, and C. Zhang, "Study of the competition between forward and backward stimulated Raman scattering in methane," Appl. Phys. B 82, 463-468 (2006).
[CrossRef]

K. Sentrayan, L. Major, A. Michael, and V. Kushawaha, "Observation of intense Stokes and anti-Stokes lines in CH4 pumped by 355 nm of a Nd:YAG laser," Appl. Phys. B 55, 311-318 (1992).
[CrossRef]

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Highly efficient Raman conversion in O2 pumped by a seeded narrow band second-harmonic Nd:YAG laser," Appl. Phys. B 81, 525-530 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Taira, K. Ide, and H. Takuma, "Accurate measurement of the pressure broadening of the v1 Raman line of CH4 in the 1-50 atm region by inverse Raman spectroscopy," Chem. Phys. Lett. 91, 299-302 (1982).
[CrossRef]

Chin. J. Chem. Phys. (1)

X. Hua, J. Leng, H. Yang, G. Sha, and C. Zhang, "Effect of thermal defocusing on backward stimulated Raman scattering in CH4," Chin. J. Chem. Phys. 19, 193-196 (2006).
[CrossRef]

IEEE J. Quantum Electron. (5)

C. G. Parazzoli, W. W. Buchman, and R. D. Stultz, "Numerical and experimental investigation of a stimulated Raman half resonator," IEEE J. Quantum Electron. QE-24, 872-880 (1988).
[CrossRef]

J. C. van den Heuvel, F. J. M. van putten, and R. J. L. Lerou, "Experimental and Numerical Stimulated Raman Scattering in an astigmatic focus," IEEE J. Quantum Electron. 29, 2267-2272 (1993).
[CrossRef]

D. C. Hanna, D. J. Pointer, and D. J. Pratt, "Stimulated Raman scattering of picosecond light pulses in hydrogen, deuterium, and methane," IEEE J. Quantum Electron. QE-22, 332-336 (1986).
[CrossRef]

V. Nassisi and A. Pecoraro, "Stimulated Brillouin and Raman scattering for the generation of short excimer laser pulses," IEEE J. Quantum Electron. 29, 2547-2552 (1993).
[CrossRef]

A. Kazzaz and S. Ruschin, "Stimulated Raman scattering in methane-experimental optimization and numerical model," IEEE J. Quantum Electron. 30, 3017-3024 (1994).
[CrossRef]

J. Appl. Phys. (2)

W. H. Lowdermilk and G. I. Kachen, "Spatial and temporal intensity distribution of stimulated Raman emission," J. Appl. Phys. 50, 3871-3878 (1979).
[CrossRef]

P. V. Avizionis, K. C. Jungling, A. H. Guenther, and R. T. Heimlich, "Measurements on the stimulated Raman effect in H2 in terms of laser oscillator and amplifier theories," J. Appl. Phys. 39, 1752-1757 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Opt. Technol. (1)

J. Phys. D: Appl. Phys. (2)

K. Sentrayan and V. Kushawaha, "Competition between steady state stimulated Raman and Brillouin scattering processes in CH4 and H2," J. Phys. D: Appl. Phys. 26, 1554-1560 (1993).
[CrossRef]

D. J. Brink, H. P. Burger, T. N. de Kock, J. A. Strauss, and D. R. Preussler, "Importance of focusing geometry with stimulated Raman scattering of Nd:YAG laser light in methane," J. Phys. D: Appl. Phys. 19, 1421-1427 (1986).
[CrossRef]

J. Russ. Laser Res. (1)

V. S. Gorelik, A. D. Kudryavtseva, and N. V. Chernega, "Stimulated infrared emission under excitation of condensed molecular dielectrics with giant pulses of a ruby laser," J. Russ. Laser Res. 27, 81-91 (2006).
[CrossRef]

Jpn. J. Appl. Phys. (1)

D. I. Chang, J. Y. Lee, and H. J. Kong, "Efficient first Stokes generation using a Brillouin resonator coupled with a Raman half-resonator," Jpn. J. Appl. Phys. 36, 4316-4319 (1997).
[CrossRef]

Opt. Commun. (2)

D. C. Hanna and D. J. Pointer, "A high power, short pulse stimulated Raman source at 1.54 μm," Opt. Commun. 60, 187-190 (1986).
[CrossRef]

Z. Chu, U. N. Singh, and T. D. Wilkerson, "A self-seeded SRS system for the generation of 1.54 μm eye-safe radiation," Opt. Commun. 75, 173-178 (1990).
[CrossRef]

Opt. Lett. (1)

Phy. Rev. B (1)

P. Sen and P. K. Sen, "Correlation and competition between SRS and SBS process," Phy. Rev. B 33, 1427-1429 (1986).
[CrossRef]

Phys. Rev. (2)

M. Maier, W. Kaiser, and J. A. Giordmaine, "Backward stimulated Raman scattering," Phys. Rev. 177, 580-599 (1969).
[CrossRef]

R. W. Hellwarth, "Theory of stimulated Raman scattering," Phys. Rev. 130, 1850-1852 (1963).
[CrossRef]

Phys. Rev. A (1)

Y. R. Shen and N. Bloembergen, "Theory of simulated Brillouin and Raman scattering," Phys. Rev. A 137, 1787-1805 (1965).
[CrossRef]

Proc. SPIE (1)

Th. Lasser, H. Gross, W. Ulrich, P. Greve, and H. J. Niederwald, "Efficient first Stokes generation using a Raman oscillator," in High Power Lasers and Laser Machining Technology, Proc. SPIE 1132, 36-41 (1989).

Rev. Sci. Instrum. (1)

W. Carnuth and T. Trickl, "A Powerful eye-safe infrared aerosol lidar: application of stimulated Raman backscattering of 1.06 mm radiation," Rev. Sci. Instrum. 65, 3324-3331 (1994).
[CrossRef]

Sov. Phys. JETP (1)

B. Ya. Zeldovich and V. V. Shkupov, "Reversal of the wave front of light in the case of depolarized pumping," Sov. Phys. JETP 48, 214-219 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Raman laser coupled with SBS cell ( CH 4 gas). RM, Rear mirror; Q, Q-switcher; BW, Brewster window; L 1 , dichroic coated meniscus focusing lens; L 2 , CaF 2 collimation lens.

Fig. 2
Fig. 2

Experimental set up for measuring the output energies of the Raman laser with CH 4 gas and CaF 2 Prism. M 1 and M 2 , mirrors; BS 1 and BS 2 , beam splitters; D 1 and D 2 , photo-detectors; E 1 and E 2 , energy meters.

Fig. 3
Fig. 3

Output of the free-running and the Q-switching regime with Cr 4 + : YAG ( T 0 = 50 % ) in the fundamental resonator. The resonator length is 40 cm. The meniscus lens ( L 1 S ) has the focal length of 12 cm and the reflectivity of 10% at 1.06   μm which is used.

Fig. 4
Fig. 4

Residual pump and Stokes outputs of the Raman laser versus pressure in CH 4 with Cr 4 + : YAG ( T 0 = 50 % ) . The first Stokes threshold is 20   mJ at 800 psi, and the maximum energy is 25 mJ at 1400 psi.

Fig. 5
Fig. 5

Output of the free-running and the Q-switching regime dye sheet ( T 0 = 11 % ) in the fundamental resonator. The resonator length is 40 cm. The meniscus lens ( L 1 L ) has the focal length of 25 cm and the reflectivity of 10% at 1.06   μm which is used.

Fig. 6
Fig. 6

Residual pump and Stokes outputs of the Raman laser versus the pressurized methane with the dye sheet ( T 0 = 11 % ) . The first Stokes threshold is 10   mJ at 200 psi, and the maximum energy is 25   mJ at 500 psi. The error bars represent one standard deviation of the data from the mean value.

Fig. 7
Fig. 7

Temporal shapes of the pulses on the Raman laser with Cr 4 + : YAG (a) and the dye-sheet (b) Q-switcher. (a) Cr 4 + : YAG Q-switcher ( T 0 = 50 % ) . Time scale, 20 ns∕division. (b) Dye sheet Q-switcher ( T 0 = 11 % ) . Time scale, 20 ns∕division.

Tables (1)

Tables Icon

Table 1 Pulse Energy of Laser Systems

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R 1 = 1 ( f b + d ) / n f , R 2 = f b .
g R = KP / ( 8 .7 + 0.39 P ) [ cm / W ] ,

Metrics