Abstract

We demonstrate the use of spots taken with magnetorheological finishing (MRF) for estimating subsurface damage (SSD) depth from deterministic microgrinding for three hard ceramics: aluminum oxynitride (Al23O27N 5∕ALON), polycrystalline alumina (Al2O 3∕PCA), and chemical vapor deposited (CVD) silicon carbide (Si4C/SiC). Using various microscopy techniques to characterize the surfaces, we find that the evolution of surface microroughness with the amount of material removed shows two stages. In the first, the damaged layer and SSD induced by microgrinding are removed, and the surface microroughness reaches a low value. Peak-to-valley (p-v) surface microroughness induced from grinding gives a measure of the SSD depth in the first stage. With the removal of additional material, a second stage develops, wherein the interaction of MRF and the material's microstructure is revealed. We study the development of this texture for these hard ceramics with the use of power spectral density to characterize surface features.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
    [CrossRef]
  2. S. Malkin and T. W. Hwang, "Grinding mechanisms for ceramics," Anal. CIRP 45, 569-580 (1996).
    [CrossRef]
  3. B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
    [CrossRef]
  4. A. G. Evans and D. B. Marshall, "Wear mechanisms in ceramics," in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, 1981), pp. 439-452.
  5. J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
    [CrossRef]
  6. J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.
  7. K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
    [CrossRef]
  8. J. Wang and R. L. Maier, "Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angel technique," Appl. Opt. 45, 5621-5628 (2006).
    [CrossRef] [PubMed]
  9. P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).
  10. W. Kanematsu, "Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method," J. Am. Ceram. Soc. 89, 2564-2570 (2006).
    [CrossRef]
  11. B. Zhang and T. D. Howes, "Material-removal mechanisms in grinding ceramics," Anal. CIRP 43, 305-308 (1994).
    [CrossRef]
  12. B. Zhang and T. D. Howes, "Subsurface evaluation of ground ceramics," Anal. CIRP 44, 263-266 (1995).
    [CrossRef]
  13. J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
    [CrossRef] [PubMed]
  14. H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995).
    [CrossRef]
  15. J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).
  16. F. W. Preston, "The stracture of abraded glass surfaces," Trans. Opt. Soc. 23, 141-164 (1922).
    [CrossRef]
  17. F. K. Aleinikov, "The influence of abrasive powder microhardness on the values of the coefficients of volume removal," Sov. Phys. Tech. Phys. 2, 505-511 (1957).
  18. P. P. Hed and D. F. Edwards, "Optical glass fabrication technology. 2: relationship between surface roughness and subsurface damage," Appl. Opt. 26, 4677-4680 (1987).
    [CrossRef] [PubMed]
  19. J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
    [CrossRef]
  20. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007).
    [CrossRef]
  21. S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "Toward magnetorheological finishing of magnetic materials (technical brief)," J. Manuf. Sci. Eng. (to be published).
  22. J. C. Lambropoulos, "From abrasive size to subsurface damage in grinding," in Optical Fabrication and Testing, Postconference Digest, Vol. 42 of OSA trends in Optics and Photonics (Optical Society of America), pp. 17-18.
  23. A. G. Evans, "Fracture toughness: the role of indentation techniques," in Fracture Mechanics Applied to Brittle Materials, S.W.Fierman, ed. (American Society for Testing and Materials, 1979), pp. 112-135.
    [CrossRef]
  24. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).
  25. OptiPro Systems, SX 50 CNC deterministic microgrinding machine.
  26. OptiPro Systems, SX 150 CNC deterministic microgrinding machine.
  27. Lighthouse Lubricant Solutions, Opticut GPM 5% in water, pH 9-10.
  28. S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.
  29. A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001).
    [CrossRef]
  30. QED Technologies, Q22-Y CNC machine.
  31. QED Technologies, D10 MR fluid.
  32. Taylor Hobson, TalySurf 2 PGI profilometer.
  33. Zygo Corp., NewView 5000 noncontact profilometer.
  34. Nano Technology Systems Division Carl Zeiss NTS GmbH, LEO 982 FE SEM.
  35. Veeco Instruments, Dimension 3100S-1 AFM.
  36. Leica Microsystems, Light Microscope.
  37. S. N. Shafrir, "Surface finish and subsurface damage in polycrystalline optical materials," Ph.D. dissertation (University of Rochester, 2007).
  38. S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
    [CrossRef]
  39. J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).
  40. E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
    [CrossRef]
  41. A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, "Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components," Appl. Opt. 41, 154-171 (2002).
    [CrossRef] [PubMed]
  42. C. J. Walsh, A. J. Leistner, and B. F. Oreb, "Power spctral density analysis of optical substrates for gravitational-wave interferometry," Appl. Opt. 38, 4790-4801 (1999).
    [CrossRef]
  43. L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

2007

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007).
[CrossRef]

2006

J. Wang and R. L. Maier, "Surface assessment of CaF2 deep-ultraviolet and vacuum-ultraviolet optical components by the quasi-Brewster angel technique," Appl. Opt. 45, 5621-5628 (2006).
[CrossRef] [PubMed]

W. Kanematsu, "Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method," J. Am. Ceram. Soc. 89, 2564-2570 (2006).
[CrossRef]

2005

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
[CrossRef] [PubMed]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).

2004

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

2003

L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

2002

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

A. Duparré, J. Ferre-Borrull, S. Gliech, G. Notni, J. Steinert, and J. M. Bennett, "Surface characterization techniques for determining the root-mean-square roughness and power spectral densities of optical components," Appl. Opt. 41, 154-171 (2002).
[CrossRef] [PubMed]

2001

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001).
[CrossRef]

B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
[CrossRef]

1999

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

C. J. Walsh, A. J. Leistner, and B. F. Oreb, "Power spctral density analysis of optical substrates for gravitational-wave interferometry," Appl. Opt. 38, 4790-4801 (1999).
[CrossRef]

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

1997

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).

S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.

1996

S. Malkin and T. W. Hwang, "Grinding mechanisms for ceramics," Anal. CIRP 45, 569-580 (1996).
[CrossRef]

1995

H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995).
[CrossRef]

B. Zhang and T. D. Howes, "Subsurface evaluation of ground ceramics," Anal. CIRP 44, 263-266 (1995).
[CrossRef]

1994

B. Zhang and T. D. Howes, "Material-removal mechanisms in grinding ceramics," Anal. CIRP 43, 305-308 (1994).
[CrossRef]

1987

1981

A. G. Evans and D. B. Marshall, "Wear mechanisms in ceramics," in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, 1981), pp. 439-452.

1979

A. G. Evans, "Fracture toughness: the role of indentation techniques," in Fracture Mechanics Applied to Brittle Materials, S.W.Fierman, ed. (American Society for Testing and Materials, 1979), pp. 112-135.
[CrossRef]

1957

F. K. Aleinikov, "The influence of abrasive powder microhardness on the values of the coefficients of volume removal," Sov. Phys. Tech. Phys. 2, 505-511 (1957).

1922

F. W. Preston, "The stracture of abraded glass surfaces," Trans. Opt. Soc. 23, 141-164 (1922).
[CrossRef]

Aleinikov, F. K.

F. K. Aleinikov, "The influence of abrasive powder microhardness on the values of the coefficients of volume removal," Sov. Phys. Tech. Phys. 2, 505-511 (1957).

Arrasmith, S. R.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Bennett, J. M.

Bristow, T.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Davis, P. J.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

DeGroote, J. E.

J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).

Dumas, P.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Duparré, A.

Edwards, D. F.

Evans, A. G.

A. G. Evans and D. B. Marshall, "Wear mechanisms in ceramics," in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, 1981), pp. 439-452.

A. G. Evans, "Fracture toughness: the role of indentation techniques," in Fracture Mechanics Applied to Brittle Materials, S.W.Fierman, ed. (American Society for Testing and Materials, 1979), pp. 112-135.
[CrossRef]

Feit, M. D.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

Ferre-Borrull, J.

Fine, K. R.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
[CrossRef]

Funkenbusch, P. D.

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Gans, R. F.

Garbe, R.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
[CrossRef]

Gip, T.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
[CrossRef]

Gliech, S.

Golini, D.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.

Gregg, L. L.

L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Halliday, D.

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).

Hed, P. P.

Hogan, S.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Howes, T. D.

B. Zhang and T. D. Howes, "Subsurface evaluation of ground ceramics," Anal. CIRP 44, 263-266 (1995).
[CrossRef]

B. Zhang and T. D. Howes, "Material-removal mechanisms in grinding ceramics," Anal. CIRP 43, 305-308 (1994).
[CrossRef]

Huang, B.

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Hwang, T. W.

S. Malkin and T. W. Hwang, "Grinding mechanisms for ceramics," Anal. CIRP 45, 569-580 (1996).
[CrossRef]

Jacobs, S. D.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
[CrossRef] [PubMed]

J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).

L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.

S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "Toward magnetorheological finishing of magnetic materials (technical brief)," J. Manuf. Sci. Eng. (to be published).

Jahanmir, S.

H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995).
[CrossRef]

Kanematsu, W.

W. Kanematsu, "Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method," J. Am. Ceram. Soc. 89, 2564-2570 (2006).
[CrossRef]

Kordonski, W. E.

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Kordonski, W. I.

S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.

Kozhinova, I. A.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Lambropoulos, J. C.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007).
[CrossRef]

J. A. Randi, J. C. Lambropoulos, and S. D. Jacobs, "Subsurface damage in some single crystalline optical materials," Appl. Opt. 44, 2241-2249 (2005).
[CrossRef] [PubMed]

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.

J. C. Lambropoulos, "From abrasive size to subsurface damage in grinding," in Optical Fabrication and Testing, Postconference Digest, Vol. 42 of OSA trends in Optics and Photonics (Optical Society of America), pp. 17-18.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "Toward magnetorheological finishing of magnetic materials (technical brief)," J. Manuf. Sci. Eng. (to be published).

Lee, L. C.

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Leistner, A. J.

Li, Y.

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Lin, B.

B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
[CrossRef]

B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
[CrossRef]

Liu, X. D.

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Maier, R. L.

Malik, I. J.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Malkin, S.

S. Malkin and T. W. Hwang, "Grinding mechanisms for ceramics," Anal. CIRP 45, 569-580 (1996).
[CrossRef]

Marino, A. E.

J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).

L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

Marshall, D. B.

A. G. Evans and D. B. Marshall, "Wear mechanisms in ceramics," in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, 1981), pp. 439-452.

Marx, E.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Menapace, J. A.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

Miller, P. E.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

Nguyen, Q.

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
[CrossRef]

Notni, G.

Oreb, B. F.

Poduje, N.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Pollicove, H. M.

S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.

Preston, F. W.

F. W. Preston, "The stracture of abraded glass surfaces," Trans. Opt. Soc. 23, 141-164 (1922).
[CrossRef]

Ramesh, K.

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Randi, J. A.

Resnick, R.

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).

Romanofsky, H. J.

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Ruckman, J.

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.

Ruckman, J. L.

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Shafrir, S. N.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007).
[CrossRef]

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "Toward magnetorheological finishing of magnetic materials (technical brief)," J. Manuf. Sci. Eng. (to be published).

S. N. Shafrir, "Surface finish and subsurface damage in polycrystalline optical materials," Ph.D. dissertation (University of Rochester, 2007).

Shorey, A. B.

A. B. Shorey, S. D. Jacobs, W. E. Kordonski, and R. F. Gans, "Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing," Appl. Opt. 40, 20-33 (2001).
[CrossRef]

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

Spencer, K. E.

J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).

Steele, R. A.

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

Steele, W. A.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

Steinert, J.

Stover, J. C.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Strausser, Y. E.

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Suratwala, T. I.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

Vancoille, E. Y. J.

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Walker, J.

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).

Walsh, C. J.

Wang, J.

Wang, Y.

H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995).
[CrossRef]

Wong, L. L.

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

Xu, H. H. K.

H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995).
[CrossRef]

Yin, L.

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Yu, A. B.

B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
[CrossRef]

Yu, S. Y.

B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
[CrossRef]

Zhang, B.

B. Zhang and T. D. Howes, "Subsurface evaluation of ground ceramics," Anal. CIRP 44, 263-266 (1995).
[CrossRef]

B. Zhang and T. D. Howes, "Material-removal mechanisms in grinding ceramics," Anal. CIRP 43, 305-308 (1994).
[CrossRef]

Anal. CIRP

S. Malkin and T. W. Hwang, "Grinding mechanisms for ceramics," Anal. CIRP 45, 569-580 (1996).
[CrossRef]

B. Zhang and T. D. Howes, "Material-removal mechanisms in grinding ceramics," Anal. CIRP 43, 305-308 (1994).
[CrossRef]

B. Zhang and T. D. Howes, "Subsurface evaluation of ground ceramics," Anal. CIRP 44, 263-266 (1995).
[CrossRef]

Appl. Opt.

J. Am. Ceram. Soc.

W. Kanematsu, "Visualization of subsurface damage in silicon nitride from grinding by a plasma etching and dye impregnation method," J. Am. Ceram. Soc. 89, 2564-2570 (2006).
[CrossRef]

H. H. K. Xu, S. Jahanmir, and Y. Wang, "Effect of grain size on scratch linteractions and material removal in alumina," J. Am. Ceram. Soc. 78, 881-891 (1995).
[CrossRef]

J. Manuf. Sci. Eng.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "Toward magnetorheological finishing of magnetic materials (technical brief)," J. Manuf. Sci. Eng. (to be published).

J. Vac. Sci. Technol. B

E. Marx, I. J. Malik, Y. E. Strausser, T. Bristow, N. Poduje, and J. C. Stover, "Power spectral densities: a multiple technique study of different Si wafer surfaces," J. Vac. Sci. Technol. B 20, 31-41 (2002).
[CrossRef]

Key Eng. Mater.

B. Lin, S. Y. Yu, B. Lin, and A. B. Yu, "Study of the formation and propagation conditions of grinding crack for ceramics," Key Eng. Mater. 202-203, 121-126 (2001).
[CrossRef]

Precis. Eng.

S. N. Shafrir, J. C. Lambropoulos, and S. D. Jacobs, "A magnetorheological polishing-based approach for studying precision microground surfaces of tungsten carbides," Precis. Eng. 31, 83-93 (2007).
[CrossRef]

Proc. SPIE

S. R. Arrasmith, I. A. Kozhinova, L. L. Gregg, A. B. Shorey, H. J. Romanofsky, S. D. Jacobs, D. Golini, W. E. Kordonski, S. Hogan, and P. Dumas, "Details of the polishing spot in Magnetorheological finishing (MRF)," Proc. SPIE 3782, 92-100 (1999).
[CrossRef]

J. E. DeGroote, A. E. Marino, K. E. Spencer, and S. D. Jacobs, "Power spectral density plots inside MRF spots made with a polishing abrasive-free MR fluid," Proc. SPIE TD03, 134-138 (2005).

L. L. Gregg, A. E. Marino, and S. D. Jacobs, "Grain decoration in aluminum oxynitride (ALON) from polishing on bound abrasive laps," Proc. SPIE TD02, 81-83 (2003).

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "Utilization of magnetorheological finishing as a diagnositic tool of investigation the three-dimensional structure of fractures in fused silica," Proc. SPIE 5991, 599102 (2005).
[CrossRef]

P. E. Miller, T. I. Suratwala, L. L. Wong, M. D. Feit, J. A. Menapace, P. J. Davis, and R. A. Steele, "The distribution of subsurface damage in fused silica," Proc. SPIE 5991, 599101 (2005).

K. R. Fine, R. Garbe, T. Gip, and Q. Nguyen, "Non-destructive, real time direct measurement of subsurface damage," Proc. SPIE 5999, 105-110 (2005).
[CrossRef]

J. A. Menapace, P. J. Davis, W. A. Steele, L. L. Wong, T. I. Suratwala, and P. E. Miller, "MRF applications: measurement of process-dependent subsurface damage in optical materials usin the MRF wedge technique," Proc. SPIE 5991, 39-49 (2005).

J. C. Lambropoulos, Y. Li, P. D. Funkenbusch, and J. L. Ruckman, "Noncontact estimate of grinding-induced subsurface damage," Proc. SPIE 3782, 41-50 (1999).
[CrossRef]

Sov. Phys. Tech. Phys.

F. K. Aleinikov, "The influence of abrasive powder microhardness on the values of the coefficients of volume removal," Sov. Phys. Tech. Phys. 2, 505-511 (1957).

Trans. Opt. Soc.

F. W. Preston, "The stracture of abraded glass surfaces," Trans. Opt. Soc. 23, 141-164 (1922).
[CrossRef]

Wear

L. Yin, E. Y. J. Vancoille, L. C. Lee, B. Huang, K. Ramesh, and X. D. Liu, "High-quality grinding of polycrystalline silicon carbide spherical surface," Wear 256, 197-207 (2004).
[CrossRef]

Other

J. C. Lambropoulos, S. D. Jacobs, and J. Ruckman, "Material removal mechanisms from grinding to polishing," in Finishing of Advanced Ceramics and Glasses Symposium at the 101st Annual Meeting of the American Ceramic Society, R. Sabia, V. A. Greenhunt, and C. G. Pantano, eds. (American Ceramic Society, 1999), pp. 113-128.

A. G. Evans and D. B. Marshall, "Wear mechanisms in ceramics," in Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed. (American Society for Metals, 1981), pp. 439-452.

J. C. Lambropoulos, "From abrasive size to subsurface damage in grinding," in Optical Fabrication and Testing, Postconference Digest, Vol. 42 of OSA trends in Optics and Photonics (Optical Society of America), pp. 17-18.

A. G. Evans, "Fracture toughness: the role of indentation techniques," in Fracture Mechanics Applied to Brittle Materials, S.W.Fierman, ed. (American Society for Testing and Materials, 1979), pp. 112-135.
[CrossRef]

D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (Wiley, 1997).

OptiPro Systems, SX 50 CNC deterministic microgrinding machine.

OptiPro Systems, SX 150 CNC deterministic microgrinding machine.

Lighthouse Lubricant Solutions, Opticut GPM 5% in water, pH 9-10.

S. D. Jacobs, H. M. Pollicove, W. I. Kordonski, and D. Golini, "Magnetorheological finishing (MRF) in deterministic optics manufacturing," in International Conference on Precision Engineering (ICPE), (Taipei, Taiwan, 1997), pp. 685-690.

QED Technologies, Q22-Y CNC machine.

QED Technologies, D10 MR fluid.

Taylor Hobson, TalySurf 2 PGI profilometer.

Zygo Corp., NewView 5000 noncontact profilometer.

Nano Technology Systems Division Carl Zeiss NTS GmbH, LEO 982 FE SEM.

Veeco Instruments, Dimension 3100S-1 AFM.

Leica Microsystems, Light Microscope.

S. N. Shafrir, "Surface finish and subsurface damage in polycrystalline optical materials," Ph.D. dissertation (University of Rochester, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) Schematics of the two grinding configuration used in our experiments: (a) contour and (b) ring tool configurations, respectively.

Fig. 2
Fig. 2

(Color online) Light microscope images of ground surfaces: (a) rough ground CVD SiC ( 5 10 μ m grain size, 40- μ m tool grit size w∕contour configuration, 4 μ m p-v); (b) fine ground ALON ( 150 300 μ m grain size, 2 4 μ m tool grit size w∕contour configuration, 4 μ m p-v); (c) fine ground CVD SiC ( 5 10 μ m grain size, 2 4 μ m tool grit size w∕contour configuration, 0.4 μ m p-v); (d) medium ground PCA (submicron grain size, 10 20 μ m tool grit size w∕ring configuration, 8.5 μ m p-v).

Fig. 3
Fig. 3

Morphology of the as ground surfaces using SEM with different magnifications: (a), (b) ALON ground w∕contour configuration, 40 μ m tool grit size, and 14.5 μ m p-v, low and high magnification, respectively, were taken using low beam voltage (1 kV), at a 5   mm working distance; (c), (d) CVD SiC ground w∕contour configuration 40- μ m tool grit size, 4 μ m p-v, low and high magnification, respectively, were taken using nominal beam voltage (10 kV), at 10   mm working distance; and (e), (f) PCA ground w∕ring configuration, 10 20 μ m tool grit size, 8.5 μ m p-v, low and high magnification, respectively, were taken using low beam voltage (1.5 kV), at a 3   mm working distance.

Fig. 4
Fig. 4

(Color online) (a) 3-D image of an MRF spot taken with a contact stylus profilometer on rough ground CVD SiC for 8 min. Arrows indicate the spot leading edge (where MRF ribbon first contacts the material), spot ddp region, identified by an ellipse (deepest point of part penetration into the MRF fluid ribbon), and the spot trailing edge. The fluid flow direction is from left to right. (b) Spot profile extracted from a line scan through the center of the 3-D map (indicated by a dashed line). The distance between the trailing edge and the ddp region is 2   mm in the horizontal direction. The spot depth reaches 6 μ m in the region sampled with the line scan.

Fig. 5
Fig. 5

(Color online) Scans taken on rough ground CVD SiC, spotted for 3 min: (a) 3-D map done with the white light interferometer in stitching mode, transverse to the MRF flow (see arrow indicating the MRF flow direction); (b), (c) areal maps ( 0.3 × 0.3 mm 2 ) of microroughness on the ground surface and within the spot ddp, respectively; (d) line scan of the ground surface, taken from the center of (b); (e) line scans within the ddp region transverse to the MRF flow direction, taken from the center of (c) (as indicated by the arrows); and (f) Line scan of the spot width profile (indicated by a dashed white line in the 3-D map).

Fig. 6
Fig. 6

Schematic diagram of the procedure used for surface microroughness measurements within MRF spots. The dashed ellipse represents the ddp region. The rectangle within the ddp represents one of the five random sites over which surface roughness was measured. (a) First orientation of the spot for generating line scans perpendicular ( ) to the MR fluid flow direction, and (b) after rotating the part 90° to generate line scans parallel ( ) to the MR fluid flow direction.

Fig. 7
Fig. 7

Surface microroughness (p-v) evolution with the amount of material removed w∕MRF after grinding with (semi log): (a), (b) rough, and (c) medium tools, for ALON, CVD SiC, and PCA, respectively.

Fig. 8
Fig. 8

SEM images inside of MRF spots taken on PCA that was previously medium ground ( 10 20 μ m grit size) to an initial roughness of 3.6 μ m p-v. (a)–(e) letters represent: 1.6 , 2.6, 5.6, 9, and 16 μ m spots depths (MRF material removed). The initial deformation layer as seen in Fig. 3(e) and 3(f) is completely removed. Long spot dwell times [(d), (e)] enhanced the intrinsic directionality of the MRF process.

Fig. 9
Fig. 9

(Color online) PSD (log-log) for MRF spotting done on initially rough ground ( 40 μ m grit size) ALON. White light interferometer measurements were taken using a 2.5 objective using a 2 × magnification ( 1.41 × 1.06 mm 2 ) .

Fig. 10
Fig. 10

(Color online) AFM scans taken at spots ddp of initially rough ground ALON: (a) short and (b) long dwell time spots (3 and 16 min, respectively); (c), (d) profiles taken across the diagonal of scans, represented by the white line in (a) and (b), respectively. The markers in (c) and (d) represent vertical heights in the range 11 14   nm , and 19 3 0   nm for the short and long dwell time spot, respectively. The grain size is 50 1 0 0 μ m .

Fig. 11
Fig. 11

(Color online) Calculated rms (nm) surface roughness from PSD plots generated from the interferometer and AFM measurements (log-log). Data points represent the averaged rms values for a specific spatial frequency bandwidth, indicated as rms 1, rms 2, etc. in Fig. 9.

Tables (4)

Tables Icon

Table 1 Physical and Mechanical Properties of Hard Ceramics Listed by Increasing Vickers Hardness and Fracture Toughness a

Tables Icon

Table 2 Grinding Conditions Used in a Single Pass a

Tables Icon

Table 3 Selected Summary of Results for Grinding and Spotting Experiments

Tables Icon

Table 4 Table 3.( Continued )

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r m s = 1 N · i = 1 N z 2 i ( m ) ,
P S D 1 D ( f j ) Δ x N | k = 1 N z k   exp [ ( 2 π i ) j k / N ] | 2 ,
j = 1 , 2 , … ,  N / 2 ,
r m s 1 D 2 = f min f max P S D 1 D ( f ) d f .

Metrics