Abstract

We present a diffractive optical element consisting of computer-generated holograms and dielectric multilayer mirrors in a stratified setup. Illuminated with a white laser beam, consisting of three single lasers with wavelengths of 635  nm, 543   nm, and 473   nm, this element enables the far field projection of arbitrary, multicolor images. Certain advantages of holographic image generation, e.g., the possibility of a large depth of focus and a very easy optical setup, are maintained with the new element.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. H. Suh, "Color-image generation by use of binary-phase holograms," Opt. Lett. 24, 661-663 (1999).
    [CrossRef]
  2. J. R. Fienup and J. W. Goodman, "New ways to make computer generated color holograms," Nouv. Rev. Opt. Appl. 5(5), 269-275 (1974).
    [CrossRef]
  3. H. Dammann, "Color separation gratings," Appl. Opt. 17, 2273-2279 (1978).
    [CrossRef] [PubMed]
  4. J. Bengtsson, "Kinoform design with an optimal-rotation-angle method," Appl. Opt. 33, 6879-6884 (1994).
    [CrossRef] [PubMed]
  5. J. Bengtsson, "Kinoforms designed to produce different fan-out patterns for two wavelengths," Appl. Opt. 37, 2011-2020 (1998).
    [CrossRef]
  6. I. Barton, P. Blair, and M. R. Taghizadeh, "Dual-wavelength operation diffractive phase elements for pattern formation," Opt. Express 1, 54-59 (1997).
    [CrossRef] [PubMed]
  7. Y. Ogura, N. Shirai, J. Tanida, and Y. Ichioka, "Wavelength-multiplexing diffractive phase elements: design, fabrication, and performance evaluation,"J. Opt. Soc. Am. A 18, 1082-1092 (2001).
    [CrossRef]
  8. G. Nordin, R. Johnson, and A. Tanguay, Jr., "Diffraction properties of stratified volume holographic optical elements,"J. Opt. Soc. Am. A 9, 2206-2217 (1992).
    [CrossRef]
  9. S. Borgsmüller, S. Noethe, C. Dietrich, T. Kresse, and R. Männer, "Computer-generated stratified diffractive optical elements," Appl. Opt. 42, 5274-5283 (2003).
    [CrossRef] [PubMed]
  10. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).
  11. U. Schulz, U. B. Schallenberg, and N. Kaiser, "Antireflective coating design for plastic optics," Appl. Opt. 42, 1346-1351 (2003).
    [CrossRef] [PubMed]
  12. H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng. 43, 2575-2582 (2004).
    [CrossRef]
  13. P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
    [CrossRef]

2004 (1)

H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng. 43, 2575-2582 (2004).
[CrossRef]

2003 (2)

2001 (1)

1999 (2)

H. H. Suh, "Color-image generation by use of binary-phase holograms," Opt. Lett. 24, 661-663 (1999).
[CrossRef]

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

1998 (1)

1997 (1)

1994 (1)

1992 (1)

1978 (1)

1974 (1)

J. R. Fienup and J. W. Goodman, "New ways to make computer generated color holograms," Nouv. Rev. Opt. Appl. 5(5), 269-275 (1974).
[CrossRef]

1972 (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Barton, I.

Bengtsson, J.

Bierbaum, R.

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Blair, P.

Borgsmüller, S.

Braeuer, A.

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Dammann, H.

Dannberg, P.

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Dietrich, C.

Erdmann, L.

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Fienup, J. R.

J. R. Fienup and J. W. Goodman, "New ways to make computer generated color holograms," Nouv. Rev. Opt. Appl. 5(5), 269-275 (1974).
[CrossRef]

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Goodman, J. W.

J. R. Fienup and J. W. Goodman, "New ways to make computer generated color holograms," Nouv. Rev. Opt. Appl. 5(5), 269-275 (1974).
[CrossRef]

Ichioka, Y.

Johnson, R.

Kaiser, N.

Kley, E. B.

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Krehl, A.

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Kresse, T.

Männer, R.

Noethe, S.

Nordin, G.

Ogura, Y.

Rossi, M.

H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng. 43, 2575-2582 (2004).
[CrossRef]

Rudmann, H.

H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng. 43, 2575-2582 (2004).
[CrossRef]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Schallenberg, U. B.

Schulz, U.

Shirai, N.

Suh, H. H.

Taghizadeh, M. R.

Tanguay, A.

Tanida, J.

Appl. Opt. (5)

J. Opt. Soc. Am. A (2)

Microsys. Technol. (1)

P. Dannberg, R. Bierbaum, L. Erdmann, A. Krehl, A. Braeuer, and E. B. Kley, "Micro-optical elements and their integration to glass and optoelectronic wafers," Microsys. Technol. 6, 41-47 (1999).
[CrossRef]

Nouv. Rev. Opt. Appl. (1)

J. R. Fienup and J. W. Goodman, "New ways to make computer generated color holograms," Nouv. Rev. Opt. Appl. 5(5), 269-275 (1974).
[CrossRef]

Opt. Eng. (1)

H. Rudmann and M. Rossi, "Design and fabrication technologies for ultraviolet replicated micro-optics," Opt. Eng. 43, 2575-2582 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Optik (1)

R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(Color online) Principle of monochromatic image generation by a CGH.

Fig. 2
Fig. 2

(Color online) Creation of a multicolor image from the three primary colors, using three laterally separated CGHs.

Fig. 3
Fig. 3

(Color online) Principle of a wavelength selective, reflective CGH.

Fig. 4
Fig. 4

(Color online) Principle of stacked setup, creating a reflective RGB-CGH.

Fig. 5
Fig. 5

Wavelength characteristic of dielectric multilayer mirrors of different total thicknesses, designed for reflection at 543   nm .

Fig. 6
Fig. 6

(Color online) Calculated and measured wavelength characteristics of the dielectric multilayer mirrors, used for the stacked, wavelength selective CGH.

Fig. 7
Fig. 7

SEM image of a cross section of the stacked, wavelength selective CGH.

Fig. 8
Fig. 8

Detail of Fig. 7, showing the influence of layer growth on the surface relief profile (CGH with 0 .7   μm pixel size).

Fig. 9
Fig. 9

Ratio of the transmittance in a structured area ( T s ) to the transmittance in an unstructured area ( T u ) , measured for the red CGH.

Fig. 10
Fig. 10

(Color online) Optical setup for the stacked, wavelength selective CGH for multicolor image generation.

Fig. 11
Fig. 11

Monochromatic images created from an RGB laser beam.

Fig. 12
Fig. 12

Photographs of a color images, created by a wavelength selective, reflective CGH. Magnified detail illustrates large depth of focus without color separation.

Tables (1)

Tables Icon

Table 1 Total Reflective Diffraction Efficiency η in % (All Reflected Light Minus Reflected Zeroth Order) of One-Color Elements for Front∕Backside Illumination

Metrics