Abstract

One of the methods for smoothing the high intensity dc peak in the Fourier spectrum for reducing the reconstruction error in a Fourier transform volume holographic data storage system is to record holograms some distance away from or in front of the Fourier plane. We present the results of our investigation on the performance of such a defocused holographic data storage system in terms of bit-error rate and content search capability. We have evaluated the relevant recording geometry through numerical simulation, by obtaining the intensity distribution at the output detector plane. This has been done by studying the bit-error rate and the content search capability as a function of the aperture size and position of the recording material away from the Fourier plane.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
    [CrossRef]
  2. J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265, 749-752 (1994).
    [CrossRef] [PubMed]
  3. G. W. Burr, F. H. Mok, and D. Psaltis, "Storage of 10,000 holograms in LiNbO3:Fe," in Conference on Lasers and Electro-optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, 1994), paper CMB7.
  4. X. An, D. Psaltis, and G. W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3: Fe," Appl. Opt. 38, 386-393 (1999).
    [CrossRef]
  5. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, "Pixel-matched holographic data storage with megabit pages," Opt. Lett. 22, 1509-1511 (1997).
    [CrossRef]
  6. H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).
  7. G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
    [CrossRef]
  8. F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
    [CrossRef]
  9. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  10. C. B. Burckhardt, "Use of random phase mask for recording of Fourier transform holograms of data masks," Appl. Opt. 9, 695-700 (1970).
    [CrossRef] [PubMed]
  11. Y. Takeda, Y. Oshida, and Y. Miyamura, "Random phase shifters for Fourier transformed holograms," Appl. Opt. 11, 818-822 (1972).
    [CrossRef] [PubMed]
  12. Q. Gao and R. Kostuk, "Improvement to holographic digital data-storage systems with random and pseudorandom phase masks," Appl. Opt. 36, 4853-4861 (1997).
    [CrossRef] [PubMed]
  13. M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Appl. Opt. 36, 3107-3115 (1997).
    [CrossRef] [PubMed]
  14. M. P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, and M. Quintanilla, "Experimental study of the effects of a six-level phase mask on a digital holographic storage system," Appl. Opt. 37, 2094-2101 (1998).
    [CrossRef]
  15. R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.
  16. R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005).
    [CrossRef]
  17. G. Goldmann, "Recording of digital data in quasi Fourier holograms," Optik 34, 254-267 (1971).
  18. M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic data storage systems," Appl. Opt. 37, 5377-5385 (1998).
    [CrossRef]
  19. R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004).
    [CrossRef]
  20. R. John, "Investigations on content-addressable holographic memories and optical data security," Ph. D. dissertation (IIT Delhi, India, 2006).
  21. J. Joseph and D. A. Waldman, "Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image," Appl. Opt. 45, 6374-6380 (2006).
    [CrossRef] [PubMed]
  22. M. Levene, G. J. Steckman, and D. Psaltis, "Method for controlling the shift invariance of optical correlators," Appl. Opt. 38, 394-398 (1999).
    [CrossRef]
  23. C. Gu, H. Fu, and J-R. Lien, "Correlation patterns and cross-talk noise in volume holographic optical correlators," J. Opt. Soc. Am. A 12, 861-868 (1995).
    [CrossRef]
  24. M. J. O'Callaghan, "Sorting through the lore of phase mask options: performance measures and practical commercial designs," Proc. SPIE 5362, 150-159 (2004).
    [CrossRef]
  25. J. T. Gallo, M. L. Jones, and C. M. Verber, "Computer modeling of the effects of apertures in the Fourier-transform plane of Fourier-transform imaging systems," Appl. Opt. 33, 2891-2899 (1994).
    [CrossRef] [PubMed]
  26. P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
    [CrossRef]
  27. L. Menetrier and G. W. Burr, "Density implications of shift compensation post processing in holographic storage systems," Appl. Opt. 42, 845-860 (2003).
    [CrossRef] [PubMed]
  28. A. Sütő and E. Lőrincz, "Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik 115, 541-546 (2004).
    [CrossRef]
  29. P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005).
    [CrossRef] [PubMed]
  30. J. A. Hoffnagle and C. M. Jefferson, "Bit error rate for holographic data storage," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 91-100.

2006 (2)

2005 (2)

P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005).
[CrossRef]

2004 (3)

A. Sütő and E. Lőrincz, "Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik 115, 541-546 (2004).
[CrossRef]

M. J. O'Callaghan, "Sorting through the lore of phase mask options: performance measures and practical commercial designs," Proc. SPIE 5362, 150-159 (2004).
[CrossRef]

R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004).
[CrossRef]

2003 (1)

2000 (5)

J. A. Hoffnagle and C. M. Jefferson, "Bit error rate for holographic data storage," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 91-100.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

1999 (3)

1998 (2)

1997 (3)

1996 (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

1995 (2)

1994 (2)

1972 (1)

1971 (1)

G. Goldmann, "Recording of digital data in quasi Fourier holograms," Optik 34, 254-267 (1971).

1970 (1)

An, X.

Artajona, M. P. Bernal

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.

Bashaw, M. C.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Bernal, M. P.

Burckhardt, C. B.

Burr, G. W.

L. Menetrier and G. W. Burr, "Density implications of shift compensation post processing in holographic storage systems," Appl. Opt. 42, 845-860 (2003).
[CrossRef] [PubMed]

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

X. An, D. Psaltis, and G. W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3: Fe," Appl. Opt. 38, 386-393 (1999).
[CrossRef]

M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic data storage systems," Appl. Opt. 37, 5377-5385 (1998).
[CrossRef]

M. P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, and M. Quintanilla, "Experimental study of the effects of a six-level phase mask on a digital holographic storage system," Appl. Opt. 37, 2094-2101 (1998).
[CrossRef]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Appl. Opt. 36, 3107-3115 (1997).
[CrossRef] [PubMed]

R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M. P. Bernal, H. Coufal, R. K. Grygier, H. Günther, R. M. Macfarlane, and G. T. Sincerbox, "Pixel-matched holographic data storage with megabit pages," Opt. Lett. 22, 1509-1511 (1997).
[CrossRef]

G. W. Burr, F. H. Mok, and D. Psaltis, "Storage of 10,000 holograms in LiNbO3:Fe," in Conference on Lasers and Electro-optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, 1994), paper CMB7.

Coufal, H.

Coufal, H. J.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).

Fu, H.

Gallo, J. T.

Gao, Q.

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.

Q. Gao and R. Kostuk, "Improvement to holographic digital data-storage systems with random and pseudorandom phase masks," Appl. Opt. 36, 4853-4861 (1997).
[CrossRef] [PubMed]

Goldmann, G.

G. Goldmann, "Recording of digital data in quasi Fourier holograms," Optik 34, 254-267 (1971).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Grawert, F.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Grygier, R. K.

Gu, C.

Günther, H.

Hanssen, H.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Heanue, J. F.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Hesselink, L.

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Hoffnagle, J. A.

Jefferson, C. M.

John, R.

R. John, "Investigations on content-addressable holographic memories and optical data security," Ph. D. dissertation (IIT Delhi, India, 2006).

R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004).
[CrossRef]

Jones, M. L.

Joseph, J.

J. Joseph and D. A. Waldman, "Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image," Appl. Opt. 45, 6374-6380 (2006).
[CrossRef] [PubMed]

R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004).
[CrossRef]

Jurich, M.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Kobras, S.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

Koppa, P.

P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

Kostuk, R.

Kostuk, R. K.

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.

Levene, M.

Lien, J-R.

Lorincz, E.

P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

A. Sütő and E. Lőrincz, "Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik 115, 541-546 (2004).
[CrossRef]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

Macfarlane, R. M.

Menetrier, L.

Miyamura, Y.

Mok, F.

D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
[CrossRef]

Mok, F. H.

G. W. Burr, F. H. Mok, and D. Psaltis, "Storage of 10,000 holograms in LiNbO3:Fe," in Conference on Lasers and Electro-optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, 1994), paper CMB7.

O'Callaghan, M. J.

M. J. O'Callaghan, "Sorting through the lore of phase mask options: performance measures and practical commercial designs," Proc. SPIE 5362, 150-159 (2004).
[CrossRef]

Oesterschulze, E.

Oshida, Y.

Psaltis, D.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).

X. An, D. Psaltis, and G. W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3: Fe," Appl. Opt. 38, 386-393 (1999).
[CrossRef]

M. Levene, G. J. Steckman, and D. Psaltis, "Method for controlling the shift invariance of optical correlators," Appl. Opt. 38, 394-398 (1999).
[CrossRef]

D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
[CrossRef]

G. W. Burr, F. H. Mok, and D. Psaltis, "Storage of 10,000 holograms in LiNbO3:Fe," in Conference on Lasers and Electro-optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, 1994), paper CMB7.

Quintanilla, M.

Riedel, M.

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

Ritcher, P.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

Shelby, R. M.

Sincerbox, G. T.

Sincerbox eds., G. T.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).

Singh, K.

R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005).
[CrossRef]

R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004).
[CrossRef]

Steckman, G. J.

Süto, A.

A. Sütő and E. Lőrincz, "Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik 115, 541-546 (2004).
[CrossRef]

Szarvas, G.

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

Takeda, Y.

Ujhelyi, F.

Várhegyi, P.

P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

Verber, C. M.

Waldman, D. A.

Appl. Opt. (13)

X. An, D. Psaltis, and G. W. Burr, "Thermal fixing of 10,000 holograms in LiNbO3: Fe," Appl. Opt. 38, 386-393 (1999).
[CrossRef]

C. B. Burckhardt, "Use of random phase mask for recording of Fourier transform holograms of data masks," Appl. Opt. 9, 695-700 (1970).
[CrossRef] [PubMed]

Y. Takeda, Y. Oshida, and Y. Miyamura, "Random phase shifters for Fourier transformed holograms," Appl. Opt. 11, 818-822 (1972).
[CrossRef] [PubMed]

Q. Gao and R. Kostuk, "Improvement to holographic digital data-storage systems with random and pseudorandom phase masks," Appl. Opt. 36, 4853-4861 (1997).
[CrossRef] [PubMed]

M. P. Bernal, G. W. Burr, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, E. Oesterschulze, R. M. Shelby, G. T. Sincerbox, and M. Quintanilla, "Effects of multilevel phase masks on interpixel cross talk in digital holographic storage," Appl. Opt. 36, 3107-3115 (1997).
[CrossRef] [PubMed]

M. P. Bernal, G. W. Burr, H. Coufal, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, and M. Quintanilla, "Experimental study of the effects of a six-level phase mask on a digital holographic storage system," Appl. Opt. 37, 2094-2101 (1998).
[CrossRef]

G. W. Burr, S. Kobras, H. Hanssen, and H. Coufal, "Content-addressable data storage by use of volume holograms," Appl. Opt. 38, 6779-6784 (1999).
[CrossRef]

J. Joseph and D. A. Waldman, "Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image," Appl. Opt. 45, 6374-6380 (2006).
[CrossRef] [PubMed]

M. Levene, G. J. Steckman, and D. Psaltis, "Method for controlling the shift invariance of optical correlators," Appl. Opt. 38, 394-398 (1999).
[CrossRef]

M. P. Bernal, G. W. Burr, H. Coufal, and M. Quintanilla, "Balancing interpixel cross talk and detector noise to optimize areal density in holographic data storage systems," Appl. Opt. 37, 5377-5385 (1998).
[CrossRef]

J. T. Gallo, M. L. Jones, and C. M. Verber, "Computer modeling of the effects of apertures in the Fourier-transform plane of Fourier-transform imaging systems," Appl. Opt. 33, 2891-2899 (1994).
[CrossRef] [PubMed]

L. Menetrier and G. W. Burr, "Density implications of shift compensation post processing in holographic storage systems," Appl. Opt. 42, 845-860 (2003).
[CrossRef] [PubMed]

P. Várhegyi, P. Koppa, F. Ujhelyi, and E. Lőrincz, "System modeling and optimization of Fourier holographic memory," Appl. Opt. 44, 3024-3031 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

R. John, J. Joseph, and K. Singh, "Phase-image based content-addressable holographic data storage," Opt. Commun. 232, 99-106 (2004).
[CrossRef]

Opt. Lasers Eng. (1)

R. John, J. Joseph, and K. Singh, "Holographic digital data storage using phase-modulated pixels," Opt. Lasers Eng. 43, 183-194 (2005).
[CrossRef]

Opt. Lett. (1)

Optik (2)

G. Goldmann, "Recording of digital data in quasi Fourier holograms," Optik 34, 254-267 (1971).

A. Sütő and E. Lőrincz, "Optimization of data density in Fourier holographic system using spatial filtering and sparse modulation coding," Optik 115, 541-546 (2004).
[CrossRef]

Proc. SPIE (3)

P. Várhegyi, P. Koppa, E. Lőrincz, G. Szarvas, and P. Ritcher, "Optimization of the storage density in thin polarization holograms," Proc. SPIE 4149, 315-323 (2000).
[CrossRef]

F. Grawert, G. W. Burr, S. Kobras, H. Hanssen, M. Riedel, C. M. Jefferson, M. Jurich, and H. Coufal, "Content-addressable holographic databases," Proc. SPIE 4109, 177-188 (2000).
[CrossRef]

M. J. O'Callaghan, "Sorting through the lore of phase mask options: performance measures and practical commercial designs," Proc. SPIE 5362, 150-159 (2004).
[CrossRef]

Sci. Am. (1)

D. Psaltis and F. Mok, "Holographic memories," Sci. Am. 273, 70-76 (1995).
[CrossRef]

Science (1)

J. F. Heanue, M. C. Bashaw, and L. Hesselink, "Volume holographic storage and retrieval of digital data," Science 265, 749-752 (1994).
[CrossRef] [PubMed]

Other (6)

G. W. Burr, F. H. Mok, and D. Psaltis, "Storage of 10,000 holograms in LiNbO3:Fe," in Conference on Lasers and Electro-optics, Vol. 8 of OSA Technical Digest Series (Optical Society of America, 1994), paper CMB7.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox eds., Holographic Data Storage (Springer-Verlag, 2000).

R. K. Kostuk, M. P. Bernal Artajona, and Q. Gao, "Beam conditioning techniques for holographic recording systems," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 259-269.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

R. John, "Investigations on content-addressable holographic memories and optical data security," Ph. D. dissertation (IIT Delhi, India, 2006).

J. A. Hoffnagle and C. M. Jefferson, "Bit error rate for holographic data storage," in Holographic Data Storage, H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds. (Springer, 2000), pp. 91-100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of a 4-f holographic data storage system with the recording material placed z distance away from the back Fourier plane of the object lens; spatial light modulator (SLM) and lens ( L 1 , L 2 ) .

Fig. 2
Fig. 2

Dynamic range values R (in dB) for different defocusing distances. Defocusing distance is normalized to focal length.

Fig. 3(a)
Fig. 3(a)

Fig. 3(a). Reconstructed data page for Fourier plane recording with an aperture of 1.2 D N .

Fig. 3(b)
Fig. 3(b)

Fig. 3(b). Reconstructed data page for recording material placed at a distance of 0.25 f (focal length) away from the Fourier plane and for an aperture of 1.2 D N .

Fig. 4(a)
Fig. 4(a)

Fig. 4(a). (Color online) Histogram for the reconstructed data page of Fig. 2(a), with Fourier plane recording and 1.2 times the Nyquist aperture.

Fig. 4(b)
Fig. 4(b)

Fig. 4(b). (Color online) Histogram for the reconstructed data page of Fig. 2(b), with recording plane at a distance 0.25 f (focal length) and 1.2 times the Nyquist aperture.

Fig. 5(a)
Fig. 5(a)

Fig. 5(a). Distribution of 0s (circles) and 1s (squares) for hologram recorded at the Fourier plane. Solid lines represent Gaussian fitting to tails of the distributions.

Fig. 5(b)
Fig. 5(b)

Fig. 5(b). Distribution of 0s (circles) and 1s (squares) for the hologram recorded at a distance 0.25 f (focal length) away from the Fourier plane. Solid lines represent Gaussian fitting to tails of the distributions.

Fig. 6
Fig. 6

(Color online) Increase in BER as we move away from the Fourier plane for the same size of the aperture; dotted horizontal line shows the acceptable limit of the raw BER.

Fig. 7
Fig. 7

(Color online) Plot of BER as a function of aperture size (in the units of Nyquist aperture); dotted horizontal line shows the acceptable limit of the raw BER.

Fig. 8
Fig. 8

Autocorrelation peak height versus aperture size (in the units of Nyquist aperture) for different defocusing distances.

Fig. 9
Fig. 9

(Color online) Plot of product of the complex amplitude of the search page and the complex conjugate of the field distribution of the associated stored page through the central cross-section in the hologram plane. An aperture of 1.4 D N is illustrated by the two vertical lines.

Fig. 10
Fig. 10

Correlation peak height (arbitrary units) versus the size of the search argument in percentage with the same page as the stored page (‘□’ for Fourier plane and ‘’ for 0.25f away from Fourier pane) and with a different page (‘×’ for Fourier plane and ‘’ for 0.25f away from Fourier plane).

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

f ( x 3 , y 3 ) = C f ( x 1 , y 1 ) exp [ i π λ f z f ( x 1 2 + y 1 2 ) ] × exp [ i 2 π λ f ( x 1 x 3 + y 1 y 3 ) ] d x 1 d y 1 ,
f ( x 4 , y 4 ) = C f ( x 3 , y 3 ) exp [ i π λ f z f ( x 4 2 + y 4 2 ) ] × exp [ i 2 π λ f ( x 4 x 3 + y 4 y 3 ) ] d x 3 d y 3 ,
R ( dB ) = 10   log ( I max I avg ) ,
f ( x 3 , y 3 ) = C × FFT 2 - D { f ( x 1 , y 1 ) × exp [ i π λ f z f ( x 1 2 + y 1 2 ) ] } ,
P ( x 3 , y 3 ) = rect ( x 3 D ) rect ( y 3 D ) .
f ( x 3 , y 3 ) = P ( x 3 , y 3 ) f ( x 3 , y 3 ) .
f ( x 4 , y 4 ) = C × FFT 2-D { f ( x 3 , y 3 ) } .
BER = π / 2 N Δ I [ A 0 σ 0 erfc ( x c x 0 2 σ 0 ) + A 1 σ 1 erfc ( x 0 x c 2 σ 1 ) ]
| f ( x 3 , y 3 ) + exp ( i k r r ) | 2 .
g ( x 3 , y 3 ) f * ( x 3 , y 3 ) exp ( i k r r ) ,
g ( x 3 , y 3 ) f ( x 3 , y 3 ) exp ( i k r r ) .
F T { f * ( x 3 , y 3 ) g ( x 3 , y 3 ) } ,

Metrics