Abstract

Adaptive spinning-disk interferometry is capable of measuring surface profiles of a thin biolayer with subnanometer longitudinal resolution. High-speed phase modulation in the signal beam arises from the moving surface height profile on the spinning disk and is detected as a homodyne signal via dynamic two-wave mixing. A photorefractive quantum-well device performs as an adaptive mixer that compensates disk wobble and vibration while it phase-locks the signal and reference waves in the phase quadrature condition (π/2 relative phase between the signal and local oscillator). We performed biosensing of immobilized monolayers of antibodies on the disk in both transmission and reflection detection modes. Single- and dual-analyte adaptive spinning-disk immunoassays were demonstrated with good specificity and without observable cross-reactivity. Reflection-mode detection enhances the biosensing sensitivity to one-twentieth of a protein monolayer, creates a topographic map of the protein layer, and can differentiate monolayers of different species by their effective optical thicknesses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing inteferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
    [CrossRef] [PubMed]
  2. L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
    [CrossRef]
  3. A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
    [CrossRef]
  4. F. M. Davidson and L. Boutsikaris, "Homodyne detection using photorefractive materials as beamsplitters," Opt. Eng. 29(4), 369-377 (1990).
    [CrossRef]
  5. J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
    [CrossRef] [PubMed]
  6. L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
    [CrossRef]
  7. I. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
    [CrossRef]
  8. R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
    [CrossRef]
  9. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
    [CrossRef]
  10. B. F. Pouet, R. K. Ing, and S. Krishnaswamy, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782 (1996).
    [CrossRef]
  11. P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
    [CrossRef] [PubMed]
  12. S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
    [CrossRef]
  13. P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
    [CrossRef]
  14. Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Photorefractive quantum wells: transverse Franz-Keldysh geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992).
    [CrossRef]
  15. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
    [CrossRef]
  16. R. M. Brubaker, Q. N. Wang, and D. D. Nolte, "Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors," Phys. Rev. Lett. 77, 4249-4252 (1996).
    [CrossRef] [PubMed]
  17. D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, "Adaptive beam combining and interferometry using photorefractive quantum wells," J. Opt. Soc. Am. B 18, 195-205 (2001).
    [CrossRef]
  18. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).
  19. M.-L. Theye, "Investigation of the optical properties of Au by means of thin semitransparent films," Phys. Rev. B 2(8), 3060-3078 (1970).
    [CrossRef]
  20. J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
    [CrossRef]
  21. W. Cho, "A new biocompatible coating for bioanalytical devices based on PSI (polysuccinimide)," Ph.D. dissertation (Purdue University, 2006).
  22. E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
    [CrossRef] [PubMed]
  23. A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
    [CrossRef]

2006

W. Cho, "A new biocompatible coating for bioanalytical devices based on PSI (polysuccinimide)," Ph.D. dissertation (Purdue University, 2006).

2005

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

2004

2003

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
[CrossRef] [PubMed]

2001

S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
[CrossRef]

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, "Adaptive beam combining and interferometry using photorefractive quantum wells," J. Opt. Soc. Am. B 18, 195-205 (2001).
[CrossRef]

2000

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
[CrossRef]

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

1999

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

1998

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

1997

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

1996

R. M. Brubaker, Q. N. Wang, and D. D. Nolte, "Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors," Phys. Rev. Lett. 77, 4249-4252 (1996).
[CrossRef] [PubMed]

B. F. Pouet, R. K. Ing, and S. Krishnaswamy, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

1994

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

1992

1991

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
[CrossRef] [PubMed]

I. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

1990

F. M. Davidson and L. Boutsikaris, "Homodyne detection using photorefractive materials as beamsplitters," Opt. Eng. 29(4), 369-377 (1990).
[CrossRef]

1970

M.-L. Theye, "Investigation of the optical properties of Au by means of thin semitransparent films," Phys. Rev. B 2(8), 3060-3078 (1970).
[CrossRef]

Bacher, G. D.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Balasubramanian, S.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

Bernard, A.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Biaggio, I.

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

Biebuyck, H.

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

Blouin, A.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

Bosshard, H. R.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

Boutsikaris, L.

F. M. Davidson and L. Boutsikaris, "Homodyne detection using photorefractive materials as beamsplitters," Opt. Eng. 29(4), 369-377 (1990).
[CrossRef]

Brubaker, R. M.

R. M. Brubaker, Q. N. Wang, and D. D. Nolte, "Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors," Phys. Rev. Lett. 77, 4249-4252 (1996).
[CrossRef] [PubMed]

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Photorefractive quantum wells: transverse Franz-Keldysh geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992).
[CrossRef]

Chabert, B.

J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
[CrossRef]

Chapel, J. P.

J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
[CrossRef]

Cho, W.

W. Cho, "A new biocompatible coating for bioanalytical devices based on PSI (polysuccinimide)," Ph.D. dissertation (Purdue University, 2006).

Cronin-Golomb, M.

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
[CrossRef] [PubMed]

Cubel, T.

Davidson, F. M.

F. M. Davidson and L. Boutsikaris, "Homodyne detection using photorefractive materials as beamsplitters," Opt. Eng. 29(4), 369-377 (1990).
[CrossRef]

de Montmorillon, L. A.

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

Delamarche, E.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

Delaye, P.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

Ding, Y.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

Drolet, D.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

Duchet, J.

J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
[CrossRef]

Gérard, J. F.

J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
[CrossRef]

Inerowicz, H. D.

Ing, R. K.

B. F. Pouet, R. K. Ing, and S. Krishnaswamy, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Khoury, J.

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
[CrossRef] [PubMed]

Klein, M. B.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Krishnaswamy, S.

B. F. Pouet, R. K. Ing, and S. Krishnaswamy, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

Kruger, R. A.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Lahiri, I.

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Launay, J. C.

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

Lopez, R.

S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
[CrossRef]

Melloch, M. R.

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
[CrossRef] [PubMed]

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, "Adaptive beam combining and interferometry using photorefractive quantum wells," J. Opt. Soc. Am. B 18, 195-205 (2001).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Photorefractive quantum wells: transverse Franz-Keldysh geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992).
[CrossRef]

Michel, B.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

Monchalin, J.-P.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Montmorillon, L.-A.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

Nolte, D. D.

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing inteferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
[CrossRef] [PubMed]

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, "Adaptive beam combining and interferometry using photorefractive quantum wells," J. Opt. Soc. Am. B 18, 195-205 (2001).
[CrossRef]

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

R. M. Brubaker, Q. N. Wang, and D. D. Nolte, "Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors," Phys. Rev. Lett. 77, 4249-4252 (1996).
[CrossRef] [PubMed]

Q. Wang, R. M. Brubaker, D. D. Nolte, and M. R. Melloch, "Photorefractive quantum wells: transverse Franz-Keldysh geometry," J. Opt. Soc. Am. B 9, 1626-1641 (1992).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Peng, L.

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
[CrossRef] [PubMed]

Petrov, V.

S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
[CrossRef]

Pouet, B. F.

B. F. Pouet, R. K. Ing, and S. Krishnaswamy, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

Pyrak-Nolte, L. J.

D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, "Adaptive beam combining and interferometry using photorefractive quantum wells," J. Opt. Soc. Am. B 18, 195-205 (2001).
[CrossRef]

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

Regnier, F. E.

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing inteferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

Renault, J. P.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

Rodriguez, P.

S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
[CrossRef]

Roosen, G.

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

Rossomakhin, I.

I. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

Ryan, V.

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
[CrossRef] [PubMed]

Schmid, H.

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

Stepanov, S.

S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
[CrossRef]

Stepanov, S. I.

I. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

Theye, M.-L.

M.-L. Theye, "Investigation of the optical properties of Au by means of thin semitransparent films," Phys. Rev. B 2(8), 3060-3078 (1970).
[CrossRef]

Varma, M. M.

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

M. M. Varma, D. D. Nolte, H. D. Inerowicz, and F. E. Regnier, "Spinning-disk self-referencing inteferometry of antigen-antibody recognition," Opt. Lett. 29, 950-952 (2004).
[CrossRef] [PubMed]

Wang, Q.

Wang, Q. N.

R. M. Brubaker, Q. N. Wang, and D. D. Nolte, "Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors," Phys. Rev. Lett. 77, 4249-4252 (1996).
[CrossRef] [PubMed]

Woods, C.

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
[CrossRef] [PubMed]

Yu, P.

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
[CrossRef] [PubMed]

Adv. Mater.

A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, and E. Delamarche, "Microcontact printing of proteins," Adv. Mater. 12, 1067-1070 (2000).
[CrossRef]

Appl. Phys. B

S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, "Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings," Appl. Phys. B 68, 863-869 (1999).
[CrossRef]

Appl. Phys. Lett.

B. F. Pouet, R. K. Ing, and S. Krishnaswamy, "Heterodyne interferometer with two-wave mixing in photorefractive crystals for ultrasound detection on rough surfaces," Appl. Phys. Lett. 69, 3782 (1996).
[CrossRef]

L. Peng, M. M. Varma, F. E. Regnier, and D. D. Nolte, "Adaptive optical biocompact disk for molecular recognition," Appl. Phys. Lett. 86, 183902 (2005).
[CrossRef]

A. Blouin and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by two-wave mixing in a photorefractive GaAs crystal," Appl. Phys. Lett. 65, 932-934 (1994).
[CrossRef]

R. K. Ing and J.-P. Monchalin, "Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal," Appl. Phys. Lett. 59, 3233-3235 (1991).
[CrossRef]

Appl. Phys. Lett.

I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, "Laser-based ultrasound detection using photorefractive quantum wells," Appl. Phys. Lett. 73, 1041-1043 (1998).
[CrossRef]

J. Adhes. Sci. Technol.

J. Duchet, J. F. Gérard, J. P. Chapel, and B. Chabert, "Grafting of alkylchlorosilanes ontosilica from solution for adhesion enhancement," J. Adhes. Sci. Technol. 14(5), 691-718 (2000).
[CrossRef]

J. Opt. Soc. Am. B

P. Delaye, A. Blouin, D. Drolet, L.-A. Montmorillon, G. Roosen, and J.-P. Monchalin, "Detection of ultrasonic motion of a scattering surface by photorefractive InP:Fe under an applied dc field," J. Opt. Soc. Am. B 14, 1723-1734 (1997).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

L. A. de Montmorillon, I. Biaggio, P. Delaye, J. C. Launay, and G. Roosen, "Eye-safe large field of view homodyne detection using a photorefractive CdTe:V crystal," Opt. Commun. 129, 293-300 (1996).
[CrossRef]

I. Rossomakhin and S. I. Stepanov, "Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals," Opt. Commun. 86, 199-204 (1991).
[CrossRef]

Opt. Eng.

F. M. Davidson and L. Boutsikaris, "Homodyne detection using photorefractive materials as beamsplitters," Opt. Eng. 29(4), 369-377 (1990).
[CrossRef]

Opt. Lett.

J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, "Photorefractive optical lock-in detector," Opt. Lett. 16, 1442-1444 (1991).
[CrossRef] [PubMed]

P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, "Ultrasound detection through turbid media," Opt. Lett. 28, 819-891 (2003).
[CrossRef] [PubMed]

Opt. Commun.

S. Stepanov, V. Petrov, P. Rodriguez, and R. Lopez, "Directional detection of laser-generated ultrasound with an adaptive two-wave mixing photorefractive configuration," Opt. Commun. 187, 249-255 (2001).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

R. M. Brubaker, Q. N. Wang, and D. D. Nolte, "Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors," Phys. Rev. Lett. 77, 4249-4252 (1996).
[CrossRef] [PubMed]

Phys. Rev. B

M.-L. Theye, "Investigation of the optical properties of Au by means of thin semitransparent films," Phys. Rev. B 2(8), 3060-3078 (1970).
[CrossRef]

Science

E. Delamarche, A. Bernard, H. Schmid, B. Michel, and H. Biebuyck, "Patterned diversity of immunoglobulins to surfaces using microfluidic networks," Science 276, 779-781 (1997).
[CrossRef] [PubMed]

Other

W. Cho, "A new biocompatible coating for bioanalytical devices based on PSI (polysuccinimide)," Ph.D. dissertation (Purdue University, 2006).

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Two-wave mixing and homodyne signals of a PRQW device (BH51). The homodyne signal is measured with a 5-MHz Δ φ = π 6 phase modulation. The intensity ratio β between the probe and local oscillator beam is 4. Homodyne power is calibrated to be δ P p P p = 0.09 β β + 1 Δ φ , where β is the beam intensity ratio between the local oscillator and the probe.

Fig. 2
Fig. 2

Diagram of the adaptive spinning-disk interferometry system. The electro-optic phase modulator (PM) provides calibration, while the disk and APD1 provide protein detection on the spinning disk. Intensities of the probe beam are monitored by APD2. Transmitting BioCDs are read by a focused probe beam and a collimating lens after the disk (Lower left). Reflective BioCDs are read by the probe beam through a polarized beamsplitter (PBS), a 1 / 4 λ wave plate and the focusing lens (Lower right). The reflected probe beam is collimated by the same lens and sent to the PRQW device by the polarized beam splitter.

Fig. 3
Fig. 3

Adaptive spinning-disk and probe geometry converts a periodic pattern of printed protein on a spinning disk into a high-frequency phase modulation. The disk is printed with 1024 protein spokes with widths increasing with radius to maintain a 50∕50 duty cycle. At a radius of 30 mm the spoke width is 90 microns. The printed protein spoke heights are approximately 3 nm thick.

Fig. 4
Fig. 4

Homodyne spectra of the full track on the glass calibration disk (solid line) and the phase modulator with Δ φ p p = 2.1 × 10 2 rad (dashed line). The left y-axis is amplitude, and the right y-axis is equivalent phase modulation. The glass milling marks generate phase modulations Δ φ p p = 4.4 × 10 2 rad (5.8 nm at λ = 835 nm). The noise level of the calibration track is equivalent to Δ φ p p - r m s = 3 × 10 3 rad (0.4 nm at λ = 835 nm).

Fig. 5
Fig. 5

Homodyne signal from the blank track showing phase noise. Spectra were taken with a spectrum analyzer at a radius equal to 29 mm. The disk was spun at 50 Hz with 3-kHz acquisition bandwidth, which is equivalent to 0.3 mm 1 in spatial frequency. Left Y-axis is the voltage, and right Y-axis is the noise equivalent optical thickness (NEOT) calibrated by the phase modulator.

Fig. 6
Fig. 6

Single-shot oscilloscope traces of intensity and phase signals from a spinning 15-nm thick gold spoke pattern. Acquisitions were triggered by an opaque edge on the disk. The intensity modulation and homodyne signals from phase modulations were in-phase. The gold spokes were spun at 5000 rpm ( 80 Hz ). The beam intensity ratio β was equal to 1. Homodyne signal was calibrated to be δ V P = 0.27 Δ φ by the phase modulator. The corresponding optical thickness change Δ ( n d ) was 8 nm.

Fig. 7
Fig. 7

Optical thickness of a protein monolayer. Redrawn from Ref. 2. (a) Homodyne spectrum of BSA-FITC printed by gel stamping. The left Y-axis is the amplitude and the right Y-axis is the equivalent optical thinness change calibrated by the phase modulator. The optical thickness of the protein pattern was measured to be 0.6 nm corresponding to a physical thickness of 2.5 nm. Insert: fluorescence photo of the pattern. (b) BSA spoke edge profile scanned by atomic force microscope: profile of a BSA edge on glass region (left) and 3D map (right).

Fig. 8
Fig. 8

Immunoassays on the AO BioCD. Homodyne spectra were taken on tracks with 0.1-mm radius steps. Amplitudes (µV) of spectra are plotted in a 2D gray scale map with the x-axis representing frequency (with the protein center-frequency at 51.2 kHz with a 3 kHz detection bandwidth) and the y-axis representing the radius. The incubations used 200 µg∕ml of analyte in buffer solution with incubation times of 20 min. (a) Single-analyte experiment to detect Mouse IgG and Anti Mouse binding. Frame 1: Microfluidic-printed pattern of mouse IgG. Frame 2: after BSA incubation. Frame 3: Band B was incubated with nonspecific antibody Anti-Rabbit IgG. Frame 4: after both bands B and C were exposed to specific antibody antimouse IgG. Bands A and D were reference bands that were not incubated. (b) Two-analyte experiment to detect mouse IgG anti-Mouse IgG binding and rabbit IgG antirabbit IgG binding. Frame 1: printed mouse IgG. Frame 2: after global incubation with rabbit IgG. Frame 3: Bands B and C were exposed to antirabbit IgG. Frame 4: Bands C and D were exposed to antimouse IgG. Bands A and E were reference bands.

Fig. 9
Fig. 9

Quantitative results of the 2-analyte experiment showing the change in the protein signal as a function of disk radius for the three successive steps in the procedure. In step 1, the disk printed with mouse IgG is backfilled with rabbit IgG. In Step 2, the backfilled disk is incubated with antirabbit antibody on bands B and C. In Step 3, the disk is incubated in bands C and D with antimouse antibody.

Fig. 10
Fig. 10

Homodyne signal spectrum from gel-printed BSA-FITC pattern immobilized on a dielectric antinode reflective disk. The disk was spun at 80 Hz. The left Y-axis is the homodyne signal measure by a spectrum analyzer with 3-kHz bandwidth. The right Y-axis is the calibrated optical thickness change Δ ( n d ) in log scale. The carrier peak has Δ ( n d ) = 6.0 nm , and the second harmonic peak has Δ ( n d ) = 1.7 nm . The noise-equivalent optical thickness (NEOT) is 0.3 nm for a detected power of 3 µW.

Fig. 11
Fig. 11

Homodyne signal trace example of spinning avidin spokes on a reflective disk. Signals are acquired with 32 averages and triggered with the 80-Hz spin-tracking signal from the spinner. Homodyne voltage (left y-axis) is converted into optical path length ( n d ) (right y-axis) using the phase modulator calibration.

Fig. 12
Fig. 12

Topographic map of the avidin-spoke pattern fabricated by photolithography on a PSI coating on a reflective disk. The map covers an area of approximately 1∕64 of the disk. The spoke widths are 100 microns. The average protein height was 7 nm.

Fig. 13
Fig. 13

Whole-disk map of the demodulated protein signal. Half of the disk has regular avidin from egg white (left), and the other half (right) has FITC-conjugated avidin. Average heights of the 960 segments are 10.8 nm on the left and 7.3 nm on the right.

Fig. 14
Fig. 14

Histograms of the average segment heights for the 960 segments of Fig. 13. (a) Left-side segment height from avidin from egg white, (b) right-side segment height from FITC-conjugated avidin.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δ P p , l 2 P p 0 P l 0 cos [ φ ( t ) + φ P + ψ ( ω ) + π 2 ]
d ψ d ω = T 2
E ˜ = E ˜ 0 + i = 1 N δ E ˜ i
δ P = [ E ˜ 0 × ( i = 1 N δ E ˜ i ) * + i , j = 1 N δ E ˜ i × δ E ˜ j * + c . c . ]
| δ φ | | i = 1 N δ E ˜ i × ( E ˜ 0 ) 1 | .
E ˜ 0 | E ˜ 0 | g ( i = 1 N δ E ˜ i ) N σ δ E
i , j N δ E ˜ i g δ E ˜ j * N σ δ E 2 + N σ δ E 2
δ P N σ δ E 2
| δ φ | N σ δ E E 0 .
P l P l 0 ± 2 η ( ω q ) P l 0 [ P p 0 + δ P p ( t ) 0 ] sin [ φ ( t ) ]
P l 0 ± 2 η ( ω q ) P l 0 P p 0 φ ( t ) + O [ φ ( t ) δ P p ( t ) 0 ]
d ψ ( λ ) d λ = d ψ ( ω ) d ω d ω d λ = T 2 2 π c λ 2 < 0.
Δ P ( λ ) cos [ ψ ( λ ) + φ P + π / 2 ] .
ψ ( λ q ) + φ P = π .
δ P ( t ) cos [ ψ ( λ q ) + φ P + π / 2 + φ ( t ) ] φ ( t ) .
f spatial = f t 2 π R f spin
S N = ( δ P L ) 2 N L 2 + N P 2 = ( δ d NEOT ) 2
NEOT = δ d × V Homo V noise

Metrics