Abstract

Two different types of multiplexing are used to store 90 holograms at the same location in a polyvinyl alcoholacrylamide photopolymer material. In the first, the 90 holograms are stored using only peristrophic multiplexing, whereas in the second a combination of angular and peristrophic multiplexing is used. The results (diffraction efficiency and dynamic range, M#) obtained with these two multiplexing techniques are compared. With the first, the dynamic range was M #=13 and with the second M #=8. An exposure schedule method is used to calculate the exposure time necessary to store the holograms with a more uniform, higher diffraction efficiency.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2828 (1996).
    [CrossRef]
  2. O. Graydon, "Holographic storage turns blue," Opt. Laser Europe 125, 7 (2005).
  3. A. Tullo, "Data storage in 3-D," Chem. Eng. News 83(26), (2005).
  4. M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
    [CrossRef]
  5. R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic optical disk data storage," Appl. Opt. 44, 3197-3207 (2005).
    [CrossRef] [PubMed]
  6. K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
    [CrossRef]
  7. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.
  8. G. J. Steckman, A. Pu, and D. Psaltis, "Storage density of shift-multiplexed holographic memory," Appl. Opt. 40, 3387-3394 (2001).
    [CrossRef]
  9. E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006).
    [CrossRef] [PubMed]
  10. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
    [CrossRef]
  11. H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
    [CrossRef]
  12. I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
    [CrossRef]
  13. K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophic multiplexing," Opt. Lett. 19, 993-994 (1994).
    [CrossRef] [PubMed]
  14. G. A. Rakuljic, V. Levya, and A. Yariv, "Optical data storage by using orthogonal wavelength-multiplexed volume holograms," Opt. Lett. 17, 1471-1473 (1992).
    [CrossRef] [PubMed]
  15. L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
    [CrossRef]
  16. S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
    [CrossRef]
  17. D. W. M. S. F. W. Aiquin Yan and Shiquan Tao, "Multiplexing holograms in the photopolymer with equal diffraction efficiency," Proc. SPIE 5643, 109-117 (2005).
    [CrossRef]
  18. S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
    [CrossRef]

2006

2005

R. R. McLeod, A. J. Daiber, M. E. McDonald, T. L. Robertson, T. Slagle, S. L. Sochava, and L. Hesselink, "Microholographic optical disk data storage," Appl. Opt. 44, 3197-3207 (2005).
[CrossRef] [PubMed]

O. Graydon, "Holographic storage turns blue," Opt. Laser Europe 125, 7 (2005).

A. Tullo, "Data storage in 3-D," Chem. Eng. News 83(26), (2005).

H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
[CrossRef]

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

D. W. M. S. F. W. Aiquin Yan and Shiquan Tao, "Multiplexing holograms in the photopolymer with equal diffraction efficiency," Proc. SPIE 5643, 109-117 (2005).
[CrossRef]

2004

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

2003

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

2001

2000

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
[CrossRef]

1996

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

1994

1992

Anderson, K.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.

Beléndez, A.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
[CrossRef]

Cao, L.

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
[CrossRef]

Curtis, K.

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

K. Curtis, A. Pu, and D. Psaltis, "Method for holographic storage using peristrophic multiplexing," Opt. Lett. 19, 993-994 (1994).
[CrossRef] [PubMed]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.

Daiber, A. J.

Dhar, L.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

El Hafidi, I.

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

Elouad, L.

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

Fernández, E.

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
[CrossRef]

Fotheringham, E.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.

Gallego, S.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

García, C.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Graydon, O.

O. Graydon, "Holographic storage turns blue," Opt. Laser Europe 125, 7 (2005).

Grzymala, R.

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

He, Q.

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

Hesselink, L.

Hill, A.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.

Hsiao, Y.-N.

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Ihas, M.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Jin, G.

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

Kiefer, R.

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

Levya, V.

Lin, S. H.

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

Ma, X.

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
[CrossRef]

Martin, S.

H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
[CrossRef]

McDonald, M. E.

McGinn, C.

H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
[CrossRef]

McLeod, R. R.

Meyrueis, P.

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

Michaels, D.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Naydenova, I.

H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
[CrossRef]

Neipp, C.

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Ortuño, M.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Pascual, I.

E. Fernández, C. García, I. Pascual, M. Ortuño, S. Gallego, and A. Beléndez, "Optimization of a thick polyvinyl alcohol-acrylamide photopolymer for data storage using a combination of angular and peristrophic holographic multiplexing," Appl. Opt. 45, 7661-7666 (2006).
[CrossRef] [PubMed]

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Psaltis, D.

Pu, A.

Rakuljic, G. A.

Robertson, T. L.

Schnoes, M.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Schomberger, G.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Setthachayanon, S.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Sherif, H.

H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
[CrossRef]

Sissom, B.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.

Slagle, T.

Sochava, S. L.

Steckman, G. J.

Tao, Shiquan

D. W. M. S. F. W. Aiquin Yan and Shiquan Tao, "Multiplexing holograms in the photopolymer with equal diffraction efficiency," Proc. SPIE 5643, 109-117 (2005).
[CrossRef]

Tullo, A.

A. Tullo, "Data storage in 3-D," Chem. Eng. News 83(26), (2005).

Wilson, W. L.

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Wu, H.

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

Yan, D. W. M. S. F. W. Aiquin

D. W. M. S. F. W. Aiquin Yan and Shiquan Tao, "Multiplexing holograms in the photopolymer with equal diffraction efficiency," Proc. SPIE 5643, 109-117 (2005).
[CrossRef]

Yariv, A.

Appl. Opt.

Appl. Phys. B

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, "Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties," Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Chem. Eng. News

A. Tullo, "Data storage in 3-D," Chem. Eng. News 83(26), (2005).

J. Mod. Opt.

S. Gallego, M. Ortuño, C. García, C. Neipp, A. Beléndez, and I. Pascual, "High-efficiency volume holograms recording on acrylamide and N,N'methilene-bis-acrylamide photopolymer with pulsed laser," J. Mod. Opt. 52, 1575-1584 (2005).
[CrossRef]

J. Opt. A

H. Sherif, I. Naydenova, S. Martin, and C. McGinn, "Characterization of an acrylamide based photopolymer for data storage utilizing holographic angular multiplexing," J. Opt. A 7, 255-260 (2005).
[CrossRef]

Opt. Comm.

S. Blaya, L. Carretero, R. F. Madrigal, and A. Fimia, "Theoretical model of holographic grating formation in photopolymerizable dry films in slanted geometry," Opt. Comm. 173, 423-433 (2000).
[CrossRef]

Opt. Eng.

L. Cao, X. Ma, Q. He, H. Wu, and G. Jin, "Imaging spectral device based on multiple volume holographic gratings," Opt. Eng. 43, 2009-2016 (2004).
[CrossRef]

K. Y. Hsu, S. H. Lin, and Y.-N. Hsiao, "Experimental characterization of phenanthrenequinode-doped poly(methyl methacrylate) photopolymer for volume holographic storage," Opt. Eng. 42, 1390-1396 (2003).
[CrossRef]

A. Pu, K. Curtis, and D. Psaltis, "Exposure schedule for multiplexing holograms in photopolymer films," Opt. Eng. 35, 2824-2828 (1996).
[CrossRef]

Opt. Laser Europe

O. Graydon, "Holographic storage turns blue," Opt. Laser Europe 125, 7 (2005).

Opt. Laser Technol.

I. El Hafidi, R. Grzymala, R. Kiefer, L. Elouad, and P. Meyrueis, "Optical data storage on protein using angular multiplexing," Opt. Laser Technol. 37, 503-508 (2005).
[CrossRef]

Opt. Lett.

Proc. SPIE

D. W. M. S. F. W. Aiquin Yan and Shiquan Tao, "Multiplexing holograms in the photopolymer with equal diffraction efficiency," Proc. SPIE 5643, 109-117 (2005).
[CrossRef]

M. Schnoes, M. Ihas, A. Hill, L. Dhar, D. Michaels, S. Setthachayanon, G. Schomberger, and W. L. Wilson, "Holographic Storage Media for Practical Systems," Proc. SPIE 5005, 29-37 (2003).
[CrossRef]

Other

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, "High holographic data storage at 100 Gbits/μin2," 2005, http://www.inphase-technologies.com/technology/whitepapers/pdfs/highlowbarspeedlowbardatalowbarstorage.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup: BS, beam splitter; Mi, mirror; Li, lens; Di, diaphragm; SFi, microscope objective lens and pinhole; Ri, radiometers.

Fig. 2
Fig. 2

Exposure times of initial iteration versus hologram number for peristrophic multiplexing and for angular and peristrophic multiplexing.

Fig. 3
Fig. 3

Diffraction efficiency versus hologram number after initial iteration for peristrophic multiplexing only.

Fig. 4
Fig. 4

Cumulative grating strength as a function of exposure energy.

Fig. 5
Fig. 5

Exposure times of first iteration versus hologram number. White circles represent the times for peristrophic multiplexing and black circles the times for angular and peristrophic multiplexing.

Fig. 6
Fig. 6

Diffraction efficiency versus hologram number for the initial iteration (white circles) and for the first iteration (black circles) for peristrophic multiplexing only.

Fig. 7
Fig. 7

Diffraction efficiency versus hologram number after initial iteration for a combination of peristrophic and angular multiplexing.

Fig. 8
Fig. 8

Cumulative grating strength as a function of exposure energy.

Fig. 9
Fig. 9

Diffraction efficiency versus hologram number for the initial iteration (white circles) and for the first iteration (black circles) for a combination of peristrophic and angular multiplexing.

Tables (1)

Tables Icon

Table 1 Concentrations of the Photopolymer Composition

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

M # = 13
M # = 8
0 .7   bits / μm 2
4.5 bits / μm 2
bits / μm 2
150 bits / μm 2
100 bits / μm 2
700   μm
M # = i = 1 N η i 1 / 2 ,
η A V R = ( M # N ) 2 ,
700 ± 10   μm
20   ° C
25   ° C
40% 60%
700   μm
5 .5 × 5 .5   cm
N d : Y V O 4
532   nm
1 .5   cm
5   mW / cm 2
1125 lines / mm
( θ = 20.6 ° )
i = 1 N η i 1 / 2
M # = 13.5
A = a 0 + a 1 E + a 2 E 2 + a 3 E 3 + a 4 E 4 + a 5 E 5 + a 6 E 6 ,
t n = A Sat N I [ a 1 + 2 a 2 i = 1 n 1 E i + 3 a 3 ( i = 1 n 1 E i ) 2 + 4 a 4 ( i = 1 n 1 E i ) 3 + 5 a 5 ( i = 1 n 1 E i ) 4 + 6 a 6 ( i = 1 n 1 E i ) 5 ] ,
A sat
E i
M # = 7
M # = 8
M # = 8

Metrics