Abstract

High-resolution cerebral vasculature imaging has applications ranging from intraoperative procedures to basic neuroscience research. Laser speckle, with spatial contrast processing, has recently been used to map cerebral blood flow. We present an application of the technique using temporal contrast processing to image cerebral vascular structures with a field of view a few millimeters across and approximately 20  μm resolution through a thinned skull. We validate the images using fluorescent imaging and demonstrate a factor of 2–4 enhancement in contrast-to-noise ratios over reflectance imaging using white or spectrally filtered green light. The contrast enhancement enables the perception of approximately 10%–30% more vascular structures without the introduction of any contrast agent.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. E. Cameron and M. A. Cotter, "The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications," Diabetes Metab. 10, 189-224 (1994).
    [CrossRef]
  2. F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
    [PubMed]
  3. D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003).
    [CrossRef] [PubMed]
  4. R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
    [PubMed]
  5. M. Schumacher, "Microangiographic study of the normal anatomy of the cerebral venous system in rats," Neuroradiology 26, 137-140 (1984).
    [CrossRef] [PubMed]
  6. R. von Kummer and J. Weber, "Brain and vascular imaging in acute ischemic stroke: the potential of computed tomography," Neurology 49, 52-55 (1997).
  7. S. H. Aharinejad and A. Lametschwandtner, Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications (Springer-Verlag, 1992).
  8. J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
    [CrossRef]
  9. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
    [CrossRef] [PubMed]
  10. Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
    [PubMed]
  11. B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method," Med. Eng. Phys. 16, 105-111 (1994).
    [CrossRef] [PubMed]
  12. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
    [CrossRef] [PubMed]
  13. A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
    [CrossRef] [PubMed]
  14. A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
    [CrossRef]
  15. A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
    [CrossRef] [PubMed]
  16. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
    [CrossRef] [PubMed]
  17. A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
    [CrossRef]
  18. P. C. Li, S. L. Ni, L. Zhang, S. Q. Zeng, and Q. M. Luo, "Imaging cerebral blood flow through the intact rat skull with temporal laser speckle imaging," Opt. Lett. 31, 1824-1826 (2009).
    [CrossRef]
  19. J. W. Goodman, "Some fundamental properties of speckle," J. Opt. Soc. Am. 66, 1145-1150 (1976).
    [CrossRef]
  20. J. D. Briers, "Laser Doppler and time-varying speckle: a reconciliation," J. Opt. Soc. Am. A 13, 345-350 (1996).
    [CrossRef]
  21. J. Ohtsubo and T. Asakura, "Velocity measurement of a diffuse object by using time-varying speckles," Opt. Quantum Electron. 8, 523-529 (1976).
    [CrossRef]
  22. E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002).
    [CrossRef] [PubMed]
  23. W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005).
    [CrossRef]
  24. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
    [CrossRef] [PubMed]
  25. J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice-Hall, 2005).
  26. K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.
  27. X. M. Song, B. W. Pogue, S. D. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004).
    [CrossRef] [PubMed]

2009 (1)

2006 (1)

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

2005 (4)

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005).
[CrossRef]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice-Hall, 2005).

2004 (3)

X. M. Song, B. W. Pogue, S. D. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, and K. D. Paulsen, "Automated region detection based on the contrast-to-noise ratio in near-infrared tomography," Appl. Opt. 43, 1053-1062 (2004).
[CrossRef] [PubMed]

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

2003 (5)

A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003).
[CrossRef] [PubMed]

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

2002 (1)

E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002).
[CrossRef] [PubMed]

2001 (1)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

1997 (1)

R. von Kummer and J. Weber, "Brain and vascular imaging in acute ischemic stroke: the potential of computed tomography," Neurology 49, 52-55 (1997).

1996 (2)

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. D. Briers, "Laser Doppler and time-varying speckle: a reconciliation," J. Opt. Soc. Am. A 13, 345-350 (1996).
[CrossRef]

1994 (3)

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method," Med. Eng. Phys. 16, 105-111 (1994).
[CrossRef] [PubMed]

N. E. Cameron and M. A. Cotter, "The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications," Diabetes Metab. 10, 189-224 (1994).
[CrossRef]

1992 (1)

S. H. Aharinejad and A. Lametschwandtner, Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications (Springer-Verlag, 1992).

1990 (1)

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
[PubMed]

1984 (1)

M. Schumacher, "Microangiographic study of the normal anatomy of the cerebral venous system in rats," Neuroradiology 26, 137-140 (1984).
[CrossRef] [PubMed]

1976 (2)

J. W. Goodman, "Some fundamental properties of speckle," J. Opt. Soc. Am. 66, 1145-1150 (1976).
[CrossRef]

J. Ohtsubo and T. Asakura, "Velocity measurement of a diffuse object by using time-varying speckles," Opt. Quantum Electron. 8, 523-529 (1976).
[CrossRef]

Aharinejad, S. H.

S. H. Aharinejad and A. Lametschwandtner, Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications (Springer-Verlag, 1992).

Anderman, M. L.

Andermann, M. L.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Anderson, P. J. B.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

Araie, M.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

Asakura, T.

J. Ohtsubo and T. Asakura, "Velocity measurement of a diffuse object by using time-varying speckles," Opt. Quantum Electron. 8, 523-529 (1976).
[CrossRef]

Ayata, A.

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Bezzina, E. L.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

Boas, D. A.

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Bolay, H.

Boutelle, M. G.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

Briers, J. D.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. D. Briers, "Laser Doppler and time-varying speckle: a reconciliation," J. Opt. Soc. Am. A 13, 345-350 (1996).
[CrossRef]

Buck, F.

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

Burnett, M. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Cameron, N. E.

N. E. Cameron and M. A. Cotter, "The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications," Diabetes Metab. 10, 189-224 (1994).
[CrossRef]

Can, A.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Chakeres, D. W.

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Choyke, P. L.

D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003).
[CrossRef] [PubMed]

Christoforidis, G. A.

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Cotter, M. A.

N. E. Cameron and M. A. Cotter, "The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications," Diabetes Metab. 10, 189-224 (1994).
[CrossRef]

Cowley, A. W. J.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
[PubMed]

Dale, A. M.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
[CrossRef] [PubMed]

Dashner, R. A.

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Dehghani, H.

DePhilip, R. M.

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Detre, J. A.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Devor, A.

Doyley, M. M.

Dunn, A. K.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, "Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging," Appl. Opt. 44, 1823-1830 (2005).
[CrossRef] [PubMed]

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
[CrossRef] [PubMed]

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Eguchi, S.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

Fritzsche, K. H.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Fujii, H.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

Furuya, D.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Goodman, J. W.

Greenberg, J. H.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Greene, A. S.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
[PubMed]

Gursoy-Ozdemir, Y.

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Hansen-Smith, F.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
[PubMed]

Hopwood, S. E.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

Huang, Z. H.

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

Jiang, S. D.

Kangarlu, A.

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Kawamoto, E.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

Kleinfeld, D.

E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002).
[CrossRef] [PubMed]

Lametschwandtner, A.

S. H. Aharinejad and A. Lametschwandtner, Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications (Springer-Verlag, 1992).

Li, P. C.

Links, J.

J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice-Hall, 2005).

Lombard, J. H.

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
[PubMed]

Luo, Q. M.

McDonald, D. M.

D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003).
[CrossRef] [PubMed]

Molitoris, B. A.

W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005).
[CrossRef]

Moskowitz, M. A.

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

A. K. Dunn, A. Devor, H. Bolay, M. L. Anderman, M. A. Moskowitz, A. M. Dale, and D. A. Boas, "Simultaneous imaging of total cerebral hemoglobin concentration, oxygenation, and blood flow during functional activation," Opt. Lett. 28, 28-30 (2003).
[CrossRef] [PubMed]

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

Ni, S. L.

Ohtsubo, J.

J. Ohtsubo and T. Asakura, "Velocity measurement of a diffuse object by using time-varying speckles," Opt. Quantum Electron. 8, 523-529 (1976).
[CrossRef]

Paulsen, K. D.

Pogue, B. W.

Prince, J. L.

J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice-Hall, 2005).

Roysam, B.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Ruth, B.

B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method," Med. Eng. Phys. 16, 105-111 (1994).
[CrossRef] [PubMed]

Sandoval, R. M.

W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005).
[CrossRef]

Scheffold, F.

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

Schmalbrock, P.

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Schumacher, M.

M. Schumacher, "Microangiographic study of the normal anatomy of the cerebral venous system in rats," Neuroradiology 26, 137-140 (1984).
[CrossRef] [PubMed]

Shen, A.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Song, X. M.

Stewart, C. V.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Strong, A. J.

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

Tamaki, Y.

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

Tanenbaum, H. L.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Tosteson, T. D.

Tsai, C.-L.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Turner, J. N.

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

Ulbert, I.

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Volker, A. C.

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

von Kummer, R.

R. von Kummer and J. Weber, "Brain and vascular imaging in acute ischemic stroke: the potential of computed tomography," Neurology 49, 52-55 (1997).

Weber, B.

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

Weber, J.

R. von Kummer and J. Weber, "Brain and vascular imaging in acute ischemic stroke: the potential of computed tomography," Neurology 49, 52-55 (1997).

Webster, S.

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

Yoder, E. J.

E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002).
[CrossRef] [PubMed]

Yodh, A. G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Yu, G.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Yu, W.

W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005).
[CrossRef]

Yuan, S.

Zakharov, P.

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

Zeng, S. Q.

Zhang, L.

Zhou, C.

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

Am. J. Neuroradiol. (1)

R. A. Dashner, D. W. Chakeres, A. Kangarlu, P. Schmalbrock, G. A. Christoforidis, and R. M. DePhilip, "MR imaging visualization of the cerebral microvasculature: a comparison of live and postmortem studies at 8 T," Am. J. Neuroradiol. 24, 1881-1884 (2003).
[PubMed]

Am. J. Physiol. Cell. Physiol. (1)

W. Yu, R. M. Sandoval, and B. A. Molitoris, "Quantitative intravital microscopy using a generalized polarity concept for kidney studies," Am. J. Physiol. Cell. Physiol. 289, 1197-1208 (2005).
[CrossRef]

Appl. Opt. (2)

Diabetes Metab. (1)

N. E. Cameron and M. A. Cotter, "The relationship of vascular changes to metabolic factors in diabetes mellitus and their role in the development of peripheral nerve complications," Diabetes Metab. 10, 189-224 (1994).
[CrossRef]

Hypertension (1)

F. Hansen-Smith, A. S. Greene, A. W. J. Cowley, and J. H. Lombard, "Structural changes during microvascular rarefaction in chronic hypertension," Hypertension 15, 922-928 (1990).
[PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

Y. Tamaki, M. Araie, E. Kawamoto, S. Eguchi, and H. Fujii, "Noncontact, two-dimensional measurement of retinal microcirculation using laser speckle phenomenon," Invest. Ophthalmol. Vis. Sci. 35, 3825-3834 (1994).
[PubMed]

J. Biomed. Opt. (1)

J. D. Briers and S. Webster, "Laser speckle contrast analysis (LASCA): a nonscanning, full-field technique for monitoring capillary blood flow," J. Biomed. Opt. 1, 174-179 (1996).
[CrossRef]

J. Cereb. Blood Flow Metab. (4)

A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, "Dynamic imaging of cerebral blood flow using laser speckle," J. Cereb. Blood Flow Metab. 21, 195-201 (2001).
[CrossRef] [PubMed]

T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenberg, "Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry," J. Cereb. Blood Flow Metab. 24, 518-525 (2004).
[CrossRef] [PubMed]

A. J. Strong, E. L. Bezzina, P. J. B. Anderson, M. G. Boutelle, S. E. Hopwood, and A. K. Dunn, "Evaluation of laser speckle flowmetry for imaging cortical perfusion in experimental stroke studies: quantitation of perfusion and detection of peri-infarct depolarizations," J. Cereb. Blood Flow Metab. 26, 645-653 (2006).
[CrossRef]

A. Ayata, A. K. Dunn, Y. Gursoy-Ozdemir, Z. H. Huang, D. A. Boas, and M. A. Moskowitz, "Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex," J. Cereb. Blood Flow Metab. 24, 744-755 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Med. Eng. Phys. (1)

B. Ruth, "Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method," Med. Eng. Phys. 16, 105-111 (1994).
[CrossRef] [PubMed]

Microsc. Res. Tech. (1)

E. J. Yoder and D. Kleinfeld, "Cortical imaging through the intact mouse skull using two-photon excitation laser scanning microscopy," Microsc. Res. Tech. 56, 304-305 (2002).
[CrossRef] [PubMed]

Nat. Med. (1)

D. M. McDonald and P. L. Choyke, "Imaging of angiogenesis: from microscope to clinic," Nat. Med. 9, 713-725 (2003).
[CrossRef] [PubMed]

Neurology (1)

R. von Kummer and J. Weber, "Brain and vascular imaging in acute ischemic stroke: the potential of computed tomography," Neurology 49, 52-55 (1997).

Neuron (1)

A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, "Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex," Neuron 39, 353-359 (2003).
[CrossRef] [PubMed]

Neuroradiology (1)

M. Schumacher, "Microangiographic study of the normal anatomy of the cerebral venous system in rats," Neuroradiology 26, 137-140 (1984).
[CrossRef] [PubMed]

Opt. Express (1)

A. C. Volker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, "Laser speckle imaging with an active noise reduction scheme," Opt. Express 3, 9782-9787 (2005).
[CrossRef]

Opt. Lett. (2)

Opt. Quantum Electron. (1)

J. Ohtsubo and T. Asakura, "Velocity measurement of a diffuse object by using time-varying speckles," Opt. Quantum Electron. 8, 523-529 (1976).
[CrossRef]

Other (3)

J. L. Prince and J. Links, Medical Imaging Signals and Systems (Prentice-Hall, 2005).

K. H. Fritzsche, A. Can, A. Shen, C.-L. Tsai, J. N. Turner, H. L. Tanenbaum, C. V. Stewart, and B. Roysam, "Automated model based segmentation, tracing and analysis of retinal vasculature from digital fundus images," in State-of-the-Art Angiography, Applications and Plaque Imaging Using MR, CT, Ultrasound and X-rays, J. S. Suri and S. Laxminarayan, eds. (Academic, 2003), pp. 225-298.

S. H. Aharinejad and A. Lametschwandtner, Microvascular Corrosion Casting in Scanning Electron Microscopy: Techniques and Applications (Springer-Verlag, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Schematic of the setup used for image acquisition. The rhodamine emission filter is introduced and the laser is switched to green for fluorescent imaging.

Fig. 2
Fig. 2

(Color online) Schematic of the multiobserver manual segmentation procedure used to generate the weighted and confidence thresholded images for comparison.

Fig. 3
Fig. 3

(a) White light, (b) green light, (c) temporal contrast processed speckle, and (d) fluorescent image of a 6   mm × 7 .5   mm area of the rat cortex imaged through a thinned skull. This set of images was used for subsequent comparison and CNR calculations.

Fig. 4
Fig. 4

(Color online) Weighted images with different confidence levels generated from the images shown in Fig. 3.

Fig. 5
Fig. 5

(Color online) κ coefficient of the speckle, green, and white light images using the fluorescent image as the ground truth. Confidence levels vary on the x axis.

Fig. 6
Fig. 6

Images from all modalities segmented into (a)–(d) vessels and (e)–(h) background on the basis of the manually segmented fluorescent image with a confidence threshold of 90%. (a), (e) white light; (b), (f) green light; (c), (g) speckle; and (d), (h) fluorescent.

Fig. 7
Fig. 7

(Color online) CNRs of images from all modalities calculated after segmentation based on the weighted fluorescent image thresholded at different confidence levels.

Fig. 8
Fig. 8

(Color online) Comparison of the amount of vascular structure contained in the images across all four modalities shown in Fig. 3.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K = Δ I 2 I ,
κ = 2 n ( G i j = T i j = 0 ) 2 n ( G i j = T i j = 0 ) + n ( G i j = T i j = 1 ) + n ( G i j = 0 ; T i j = 1 ) ,
C N R = | μ v e s s μ b a c k | f v e s s σ v e s s 2 + f b a c k σ b a c k 2 ,

Metrics