Abstract

The longitudinal-mode stability of a single-frequency intracavity frequency-doubling laser can be enhanced by increasing the ratio between the nonlinear spectral bandwidth and the gain bandwidth of the laser. A 4  W long-term stable cw single-frequency green laser is obtained using an etalon inside the laser cavity as a spectral filter. No mode hopping is observed when the laser operates for 6 h and the power fluctuation is less than ±1.2%. In contrast, in the situation of no etalon inside the laser cavity, mode hopping can be observed at irregular intervals and the power fluctuation is ±3.8% when the laser operates for 4 h.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Q. Xi, J. Y. Zhao, and K. S. Zhang, "A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation," Chin. Phys. Lett. 21, 1532-1535 (2005).
  2. M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
    [CrossRef]
  3. M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
    [CrossRef]
  4. K. I. Martin, W. A. Clarkson, and D. C. Hanna, "3W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd:YAG ring laser," Opt. Lett. 21, 875-877 (1996).
    [CrossRef] [PubMed]
  5. K. I. Martin, W. A. Clarkson, and D. C. Hanna, "Stable, high-power, single-frequency generation at 532 nm from a diode-bar-pumped Nd:YAG ring laser with an intracavity LBO frequency doubler," Appl. Opt. 36, 4149-4152 (1997).
    [CrossRef] [PubMed]
  6. H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).
  7. Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).
  8. S. Greenstein and M. Rosenbluh, "The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation," Opt. Commun. 248, 241-248 (2005).
    [CrossRef]
  9. K. I. Martin, W. A. Clarkson, and D. C. Hanna, "Self-suppression of axial mode hopping by intracavity second-harmonic generation," Opt. Lett. 22, 375-377 (1997).
    [CrossRef] [PubMed]

2007

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

2005

S. Greenstein and M. Rosenbluh, "The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation," Opt. Commun. 248, 241-248 (2005).
[CrossRef]

W. Q. Xi, J. Y. Zhao, and K. S. Zhang, "A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation," Chin. Phys. Lett. 21, 1532-1535 (2005).

M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
[CrossRef]

2002

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

1997

1996

Bagayev, S. N.

M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

Belkin, A. M.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

Clarkson, W. A.

Gao, J. R.

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

Greenstein, S.

S. Greenstein and M. Rosenbluh, "The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation," Opt. Commun. 248, 241-248 (2005).
[CrossRef]

Hanna, D. C.

Kvashnin, N. L.

M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

Li, F. Q.

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

Lu, H. D.

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

Ma, Y.

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

Martin, K. I.

Okhapkin, M. V.

M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

Peng, K. C.

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

Rosenbluh, M.

S. Greenstein and M. Rosenbluh, "The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation," Opt. Commun. 248, 241-248 (2005).
[CrossRef]

Skvortsov, M. N.

M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

Wang, H. B.

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

Xi, W. Q.

W. Q. Xi, J. Y. Zhao, and K. S. Zhang, "A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation," Chin. Phys. Lett. 21, 1532-1535 (2005).

Zhai, Z. H.

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

Zhang, K. S.

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

W. Q. Xi, J. Y. Zhao, and K. S. Zhang, "A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation," Chin. Phys. Lett. 21, 1532-1535 (2005).

Zhao, J. Y.

W. Q. Xi, J. Y. Zhao, and K. S. Zhang, "A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation," Chin. Phys. Lett. 21, 1532-1535 (2005).

Zheng, Y. H.

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

Appl. Opt.

Chin. J. Lasers

H. B. Wang, Y. Ma, Z. H. Zhai, J. R. Gao, and K. C. Peng, "1.5 W cw frequency-stabilized and intracavity frequency-doubled ring laser end-pumped by diode laser," Chin. J. Lasers 29, 119-122 (2002).

Y. H. Zheng, H. D. Lu, F. Q. Li, K. S. Zhang, and K. C. Peng, "All-solid-state high-efficiency high-power Nd:YVO4/KTP laser of single-frequency operation," Chin. J. Lasers 34, 739-742 (2007).

Chin. Phys. Lett.

W. Q. Xi, J. Y. Zhao, and K. S. Zhang, "A high-power continuous-wave laser-diode end-pumped Nd:YVO4 laser of single-frequency operation," Chin. Phys. Lett. 21, 1532-1535 (2005).

Opt. Commun.

M. V. Okhapkin, M. N. Skvortsov, A. M. Belkin, N. L. Kvashnin, and S. N. Bagayev, "Tunable single-frequency diode-pumped Nd:YAG ring laser at 1064/532 nm for optical frequency standard application," Opt. Commun. 203, 359-362 (2002).
[CrossRef]

M. V. Okhapkin, M. N. Skvortsov, N. L. Kvashnin, and S. N. Bagayev, "Single-frequency intracavity doubled Yb:YAG ring laser," Opt. Commun. 256, 347-351 (2005).
[CrossRef]

S. Greenstein and M. Rosenbluh, "The influence of nonlinear spectral bandwidth on single longitudinal mode intra-cavity second harmonic generation," Opt. Commun. 248, 241-248 (2005).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Phase diagram of the ratio between the nonlinear spectral bandwidth and the gain bandwidth versus input power.

Fig. 2
Fig. 2

Schematic of the intracavity frequency-doubling green laser of single-frequency operation.

Fig. 3
Fig. 3

Transmission intensity of the scanning confocal F–P interferometer; it indicates that the laser is in single-longitudinal-mode operation.

Fig. 4
Fig. 4

Output power stability of the laser over 4 h without the etalon in the laser cavity.

Fig. 5
Fig. 5

Output power of the single-frequency green laser versus pump power.

Fig. 6
Fig. 6

Output power stability of the laser over 6 h with the etalon in the laser cavity.

Equations (77)

Equations on this page are rendered with MathJax. Learn more.

4   W
± 1.2 %
± 3.8 %
1064   nm
1061.4   nm
532 nm
G i 2 g 0 ( λ ˜ i , 1 ) l = 1 1 + 2 S ( λ ˜ i ) S 0 ( λ ˜ i , 1 ) α ( λ ˜ i ) 2 ε ( λ ˜ i , λ ˜ i , γ ) S ( λ ˜ i ) S 0 ( λ ˜ i , 1 ) = 0 ,
G i 2 g 0 ( λ ˜ j , 1 ) l = 1 1 + 2 S ( λ ˜ i ) S 0 ( λ ˜ i , 1 ) α ( λ ˜ j ) 4 ε ( λ ˜ i , λ ˜ j , γ ) S ( λ ˜ i ) S 0 ( λ ˜ i , 1 ) < 0 ,
λ ˜ i , j = λ i , j / Δ λ g ; λ i
λ j
Δ λ g
γ = Δ λ N L / Δ λ g ; Δ λ N L
g 0
α = L / ( 2 g 0 l ) ; L
ε = ( K S 0 ) / ( 4 g 0 l ) ; K
S 0
( L = 4.72 %
g 0 l = 0.1553 P i n
S 0 = 0.136
ε = 0.0094 / P i n
P i n
Nd:YVO 4
LiB 3 O 5
Nd:YVO 4
255   GHz
226   GHz   cm
1064   nm
1.8   cm
125   GHz
15   W
25   W
0.3   mm
343   GHz
1 Δ λ e f f 2 = 1 Δ λ g 2 + F 2 ( FSR ) 2 ( η + L ) ,
25   W
130   GHz
1.064 μ m
808   nm
1.064 μ m
1.064 μ m
100 m m
1.064 μ m
532   nm
100 m m
120   mm
390   mm
| A + D | 2
400 μ m
Nd:YVO 4
Nd:YVO 4
3   mm × 3   mm × 8   mm
Nd:YVO 4
1.064 μ m
808   nm
3 m m × 3 m m × 18 m m
149 ° C
0.1 ° C
15 ° C 7 0 ° C
0.01 ° C
750   MHz
15   W
23.5   W
± 3.8 %
40.2 ° C
4   W
23.5   W
23.5   W
± 1.2 %
M 2
M x 2
M y 2
Nd:YVO 4
± 1.2 %
± 3.8 %
532 nm
532 nm
532 nm

Metrics